44 research outputs found

    The effects of verbal consequences for rule-following on sensitivity to programmed contingencies of reinforcement

    Get PDF
    This study examined the effects of two types of verbal consequences for rule-following and their impact on subject's responses to programmed schedules of reinforcement. The first type of consequence involved feedback on the correspondence between the subject's behavior and the behavior specified in an antecedent rule. A second type of consequence involved this same feedback plus feedback on the number of points earned for task performance. Some subjects were given accurate feedback with respect to rule-following and some were told that the rule was being followed regardless of behavior. The task involved moving a circle through a grid on a video screen using telegraph keys operating on a multiple schedule of reinforcement. Successful task performance resulted in the delivery of a point, exchangeable for chances at a cash prize. The subjects were given an accurate rule that specified the appropriate behavior for a DRL 6/FR 18 multiple schedule of reinforcement with two-minute components. After 32 minutes of responding, this schedule was changed, without announcement, to a FR 1/FI Yoked schedule of reinforcement. The change from the DRL 6 to the FR 1 enabled an increase in effectiveness (more points could be earned in a given unit of time) and the change from the FR 18 to the FI Yoked enabled an increase in efficiency (fewer responses could earn the same number of points). The changed contingencies were kept in place for 64 minutes

    Fermi velocity engineering in graphene by substrate modification

    Full text link
    The Fermi velocity is one of the key concepts in the study of a material, as it bears information on a variety of fundamental properties. Upon increasing demand on the device applications, graphene is viewed as a prototypical system for engineering Fermi velocity. Indeed, several efforts have succeeded in modifying Fermi velocity by varying charge carrier concentration. Here we present a powerful but simple new way to engineer Fermi velocity while holding the charge carrier concentration constant. We find that when the environment embedding graphene is modified, the Fermi velocity of graphene is (i) inversely proportional to its dielectric constant, reaching ~2.5×106\times10^6 m/s, the highest value for graphene on any substrate studied so far and (ii) clearly distinguished from an ordinary Fermi liquid. The method demonstrated here provides a new route toward Fermi velocity engineering in a variety of two-dimensional electron systems including topological insulators.Comment: accepted in Scientific Report

    Using enhanced number and brightness to measure protein oligomerization dynamics in live cells

    Get PDF
    Protein dimerization and oligomerization are essential to most cellular functions, yet measurement of the size of these oligomers in live cells, especially when their size changes over time and space, remains a challenge. A commonly used approach for studying protein aggregates in cells is number and brightness (N&B), a fluorescence microscopy method that is capable of measuring the apparent average number of molecules and their oligomerization (brightness) in each pixel from a series of fluorescence microscopy images. We have recently expanded this approach in order to allow resampling of the raw data to resolve the statistical weighting of coexisting species within each pixel. This feature makes enhanced N&B (eN&B) optimal for capturing the temporal aspects of protein oligomerization when a distribution of oligomers shifts toward a larger central size over time. In this protocol, we demonstrate the application of eN&B by quantifying receptor clustering dynamics using electron-multiplying charge-coupled device (EMCCD)-based total internal reflection microscopy (TIRF) imaging. TIRF provides a superior signal-to-noise ratio, but we also provide guidelines for implementing eN&B in confocal microscopes. For each time point, eN&B requires the acquisition of 200 frames, and it takes a few seconds up to 2 min to complete a single time point. We provide an eN&B (and standard N&B) MATLAB software package amenable to any standard confocal or TIRF microscope. The software requires a high-RAM computer (64 Gb) to run and includes a photobleaching detrending algorithm, which allows extension of the live imaging for more than an hour

    The Complete Genome Sequence of ‘Candidatus Liberibacter solanacearum’, the Bacterium Associated with Potato Zebra Chip Disease

    Get PDF
    Zebra Chip (ZC) is an emerging plant disease that causes aboveground decline of potato shoots and generally results in unusable tubers. This disease has led to multi-million dollar losses for growers in the central and western United States over the past decade and impacts the livelihood of potato farmers in Mexico and New Zealand. ZC is associated with ‘Candidatus Liberibacter solanacearum’, a fastidious alpha-proteobacterium that is transmitted by a phloem-feeding psyllid vector, Bactericera cockerelli Sulc. Research on this disease has been hampered by a lack of robust culture methods and paucity of genome sequence information for ‘Ca. L. solanacearum’. Here we present the sequence of the 1.26 Mbp metagenome of ‘Ca. L. solanacearum’, based on DNA isolated from potato psyllids. The coding inventory of the ‘Ca. L. solanacearum’ genome was analyzed and compared to related Rhizobiaceae to better understand ‘Ca. L. solanacearum’ physiology and identify potential targets to develop improved treatment strategies. This analysis revealed a number of unique transporters and pathways, all potentially contributing to ZC pathogenesis. Some of these factors may have been acquired through horizontal gene transfer. Taxonomically, ‘Ca. L. solanacearum’ is related to ‘Ca. L. asiaticus’, a suspected causative agent of citrus huanglongbing, yet many genome rearrangements and several gene gains/losses are evident when comparing these two Liberibacter. species. Relative to ‘Ca. L. asiaticus’, ‘Ca. L. solanacearum’ probably has reduced capacity for nucleic acid modification, increased amino acid and vitamin biosynthesis functionalities, and gained a high-affinity iron transport system characteristic of several pathogenic microbes

    The 3-Phosphoinositide-Dependent Protein Kinase 1 Inhibits Rod Photoreceptor Development

    No full text
    The transition of rod precursor cells to post-mitotic rod photoreceptors can be promoted by extrinsic factors such as insulin-like growth factor 1 (IGF- 1), which regulates phosphatidylinositide concentration, and consequently the 3- phosphoinositide-dependent protein kinase-1 (PDPK-1). PDPK-1 is a 63 kDa cytoplasmic kinase that controls cell proliferation and differentiation. In the mouse retina, PDPK-1 and its phosphorylated derivative p-PDPK-1 (Ser241), showed peak expression during the first postnatal (PN) day with a substantial decline by PN7 and in the adult retina. Though initially widely distributed among cell types, PDPK-1 expression decreased first in the inner retina and later in the outer retina. When PDPK-1 is inhibited in neonatal retinal explants by BX795, there is a robust increase in rod photoreceptor numbers. The increase in rods depended on the activity of PKC, as BX795 had no effect when PKC is inhibited. Inhibition of PDPK-1-dependent kinases, such as P70-S6K, but not others, such as mTORC-1, stimulated rod development. The P70-S6K-dependent increase in rods appears to be correlated with phosphorylation of Thr252 and not at Thr389, a substrate of mTORC-1. This pathway is also inactive while PKC activity is inhibited. We also found that inhibition of the kinase mTORC-2, also stimulated by insulin activity, similarly increased rod formation, and this effect appears to be independent of PKC activity. This may represent a novel intracellular signaling pathway that also stimulates photoreceptor development. Consistent with previous studies, stimulation of STAT3 activity is sufficient to prevent any PDPK-1, P70-S6K, or mTORC2-dependent increase in rods. Together the data indicate that PDPK-1 and other intrinsic kinases downstream of IGF-1 are key regulators of rod photoreceptor formation
    corecore