36 research outputs found
Nanoscale Dynamics of Phase Flipping in Water near its Hypothesized Liquid-Liquid Critical Point
Achieving a coherent understanding of the many thermodynamic and dynamic
anomalies of water is among the most important unsolved puzzles in physics,
chemistry, and biology. One hypothesized explanation imagines the existence of
a line of first order phase transitions separating two liquid phases and
terminating at a novel "liquid-liquid" critical point in a region of low
temperature () and high pressure (). Here we analyze a common model of water, the ST2 model, and find
that the entire system flips between liquid states of high and low density.
Further, we find that in the critical region crystallites melt on a time scale
of nanoseconds. We perform a finite-size scaling analysis that accurately
locates both the liquid-liquid coexistence line and its associated
liquid-liquid critical point.Comment: 22 pages, 5 figure
Canagliflozin: Efficacy and Safety in Combination with Metformin Alone or with Other Antihyperglycemic Agents in Type 2 Diabetes
Sensitivity of solid phase stability to the interparticle potential range: studies of a new Lennard-Jones like model
Condensation in a Capillary is a Continuous Critical Phenomenon
We show that condensation in a capped capillary slit is a continuous interfacial critical phenomenon, related intimately to several other surface phase transitions. In three dimensions, the adsorption and desorption branches correspond to the unbinding of the meniscus from the cap and opening, respectively, and are equivalent to 2D-like complete-wetting transitions. For dispersion forces, the singularities on the two branches are distinct, owing to the different interplay of geometry and intermolecular forces. In two dimensions we establish precise connection, or covariance, with 2D critical-wetting and wedge-filling transitions: i.e., we establish that certain interfacial properties in very different geometries are identical. Our predictions of universal scaling and covariance in finite capillaries are supported by extensive Ising model simulation studies in two and three dimensions
Self-assembly and crystallisation of indented colloids at a planar wall.
We report experimental and simulation studies of the structure of a monolayer of indented ("lock and key") colloids, on a planar surface. On adding a non-absorbing polymer with prescribed radius and volume fraction, depletion interactions are induced between the colloids, with controlled range and strength. For spherical particles, this leads to crystallisation, but the indented colloids crystallise less easily than spheres, in both simulation and experiment. Nevertheless, simulations show that indented colloids do form plastic (rotator) crystals. We discuss the conditions under which this occurs, and the possibilities of lower-symmetry crystal states. We also comment on the kinetic accessibility of these states
Self-assembly and crystallisation of indented colloids at a planar wall.
We report experimental and simulation studies of the structure of a monolayer of indented ("lock and key") colloids, on a planar surface. On adding a non-absorbing polymer with prescribed radius and volume fraction, depletion interactions are induced between the colloids, with controlled range and strength. For spherical particles, this leads to crystallisation, but the indented colloids crystallise less easily than spheres, in both simulation and experiment. Nevertheless, simulations show that indented colloids do form plastic (rotator) crystals. We discuss the conditions under which this occurs, and the possibilities of lower-symmetry crystal states. We also comment on the kinetic accessibility of these states
