36 research outputs found

    Ancillary human health benefits of improved air quality resulting from climate change mitigation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Greenhouse gas (GHG) mitigation policies can provide ancillary benefits in terms of short-term improvements in air quality and associated health benefits. Several studies have analyzed the ancillary impacts of GHG policies for a variety of locations, pollutants, and policies. In this paper we review the existing evidence on ancillary health benefits relating to air pollution from various GHG strategies and provide a framework for such analysis.</p> <p>Methods</p> <p>We evaluate techniques used in different stages of such research for estimation of: (1) changes in air pollutant concentrations; (2) avoided adverse health endpoints; and (3) economic valuation of health consequences. The limitations and merits of various methods are examined. Finally, we conclude with recommendations for ancillary benefits analysis and related research gaps in the relevant disciplines.</p> <p>Results</p> <p>We found that to date most assessments have focused their analysis more heavily on one aspect of the framework (e.g., economic analysis). While a wide range of methods was applied to various policies and regions, results from multiple studies provide strong evidence that the short-term public health and economic benefits of ancillary benefits related to GHG mitigation strategies are substantial. Further, results of these analyses are likely to be underestimates because there are a number of important unquantified health and economic endpoints.</p> <p>Conclusion</p> <p>Remaining challenges include integrating the understanding of the relative toxicity of particulate matter by components or sources, developing better estimates of public health and environmental impacts on selected sub-populations, and devising new methods for evaluating heretofore unquantified and non-monetized benefits.</p

    Conformational switching within dynamic oligomers underpins toxic gain-of-function by diabetes-associated amyloid

    Get PDF
    Toxic gain-of-function by islet amyloid polypeptide (IAPP) is thought to be mediated by membrane poration. Here the authors develop diluted-FRET to show that changes in pore structure correlate with onset of toxicity inside insulin secreting cells

    Multiple ionisation of atom clusters by intense soft X-rays from a free-electron laser

    No full text
    Sem informaçãoIntense radiation from lasers has opened up many new areas of research in physics and chemistry, and has revolutionized optical technology. So far, most work in the field of nonlinear processes has been restricted to infrared, visible and ultraviolet light(1), although progress in the development of X-ray lasers has been made recently(2). With the advent of a free-electron laser in the soft-X-ray regime below 100 nm wavelength(3), a new light source is now available for experiments with intense, short-wavelength radiation that could be used to obtain deeper insights into the structure of matter. Other free-electron sources with even shorter wavelengths are planned for the future. Here we present initial results from a study of the interaction of soft X-ray radiation, generated by a free-electron laser, with Xe atoms and clusters. We find that, whereas Xe atoms become only singly ionized by the absorption of single photons, absorption in clusters is strongly enhanced. On average, each atom in large clusters absorbs up to 400 eV, corresponding to 30 photons. We suggest that the clusters are heated up and electrons are emitted after acquiring sufficient energy. The clusters finally disintegrate completely by Coulomb explosion.Intense radiation from lasers has opened up many new areas of research in physics and chemistry, and has revolutionized optical technology. So far, most work in the field of nonlinear processes has been restricted to infrared, visible and ultraviolet light(1), although progress in the development of X-ray lasers has been made recently(2). With the advent of a free-electron laser in the soft-X-ray regime below 100 nm wavelength(3), a new light source is now available for experiments with intense, short-wavelength radiation that could be used to obtain deeper insights into the structure of matter. Other free-electron sources with even shorter wavelengths are planned for the future. Here we present initial results from a study of the interaction of soft X-ray radiation, generated by a free-electron laser, with Xe atoms and clusters. We find that, whereas Xe atoms become only singly ionized by the absorption of single photons, absorption in clusters is strongly enhanced. On average, each atom in large clusters absorbs up to 400 eV, corresponding to 30 photons. We suggest that the clusters are heated up and electrons are emitted after acquiring sufficient energy. The clusters finally disintegrate completely by Coulomb explosion.4206915482485Sem informaçãoSem informaçãoSem informaçãoWe thank the TTF team at DESY, especially P. Castro, M. Minty, D. Nölle, H. Schlarb and S. Schreiber, for running the accelerator; we also thank J. R. Schneider for support and discussions. The first group of authors (H.W. to T.M.) built the apparatus for the cluster experiment and performed the experiment; the second group of authors (B.F. to M.Y) worked on the FEL and the diagnostics. We thank K.H. Meiwes-Broer, T. Brabec, C. Rose-Petruck, J. Krzywinski, M. Lezius, I. Kostyukov, J.M. Rost, E. Ru¨hl, U. Saalman, J. Jortner and M. Smirnov and their research groups for discussions and comments, and J. Sutter for critically reading the manuscript. This work was supported by the DFG
    corecore