371 research outputs found

    XMM-Newton and NuSTAR simultaneous X-ray observations of IGR J11215-5952

    Get PDF
    We report the results of an XMM-Newton and NuSTAR coordinated observation of the Supergiant Fast X-ray Transient (SFXT) IGRJ11215-5952, performed on February 14, 2016, during the expected peak of its brief outburst, which repeats every about 165 days. Timing and spectral analysis were performed simultaneously in the energy band 0.4-78 keV. A spin period of 187.0 +/- 0.4 s was measured, consistent with previous observations performed in 2007. The X-ray intensity shows a large variability (more than one order of magnitude) on timescales longer than the spin period, with several luminous X-ray flares which repeat every 2-2.5 ks, some of which simultaneously observed by both satellites. The broad-band (0.4-78 keV) time-averaged spectrum was well deconvolved with a double-component model (a blackbody plus a power-law with a high energy cutoff) together with a weak iron line in emission at 6.4 keV (equivalent width, EW, of 40+/-10 eV). Alternatively, a partial covering model also resulted in an adequate description of the data. The source time-averaged X-ray luminosity was 1E36 erg/s (0.1-100 keV; assuming 7 kpc). We discuss the results of these observations in the framework of the different models proposed to explain SFXTs, supporting a quasi-spherical settling accretion regime, although alternative possibilities (e.g. centrifugal barrier) cannot be ruled out.Comment: 13 pages, 11 figures, accepted for publication on The Astrophysical Journa

    An XMM-Newton and NuSTAR study of IGR J18214-1318: a non-pulsating high-mass X-ray binary with a neutron star

    Get PDF
    IGR J18214-1318, a Galactic source discovered by the International Gamma-Ray Astrophysics Laboratory, is a high-mass X-ray binary (HMXB) with a supergiant O-type stellar donor. We report on the XMM-Newton and NuSTAR observations that were undertaken to determine the nature of the compact object in this system. This source exhibits high levels of aperiodic variability, but no periodic pulsations are detected with a 90% confidence upper limit of 2% fractional rms between 0.00003-88 Hz, a frequency range that includes the typical pulse periods of neutron stars (NSs) in HMXBs (0.1-103^3 s). Although the lack of pulsations prevents us from definitively identifying the compact object in IGR J18214-1318, the presence of an exponential cutoff with e-folding energy ≲30\lesssim30 keV in its 0.3-79 keV spectrum strongly suggests that the compact object is an NS. The X-ray spectrum also shows a Fe Kα\alpha emission line and a soft excess, which can be accounted for by either a partial-covering absorber with NH≈1023N_{\mathrm{H}}\approx10^{23} cm−2^{-2} which could be due to the inhomogeneous supergiant wind, or a blackbody component with kT=1.74−0.05+0.04kT=1.74^{+0.04}_{-0.05} keV and RBB≈0.3R_{BB}\approx0.3 km, which may originate from NS hot spots. Although neither explanation for the soft excess can be excluded, the former is more consistent with the properties observed in other supergiant HMXBs. We compare IGR J18214-1318 to other HMXBs that lack pulsations or have long pulsation periods beyond the range covered by our observations.Comment: 15 pages, 12 figures, 4 table

    The XMM Newton and INTEGRAL observations of the supergiant fast X-ray transient IGR J16328-4726

    Get PDF
    The accretion mechanism producing the short flares observed from the Supergiant Fast X-ray Transients (SFXT) is still highly debated and forms a major part in our attempts to place these X-ray binaries in the wider context of the High Mass X-ray Binaries. We report on a 216 ks INTEGRAL observation of the SFXT IGR J16328-4726 (August 24-27, 2014) simultaneous with two fixed-time observations with XMM Newton (33ks and 20ks) performed around the putative periastron passage, in order to investigate the accretion regime and the wind properties during this orbital phase. During these observations, the source has shown luminosity variations, from 4x10^{34} erg/s to 10^{36} erg/s, linked to spectral properties changes. The soft X-ray continuum is well modeled by a power law with a photon index varying from 1.2 up to 1.7 and with high values of the column density in the range 2-4x10^{23}/cm^2. We report on the presence of iron lines at 6.8-7.1 keV suggesting that the X-ray flux is produced by accretion of matter from the companion wind characterized by density and temperature inhomogeneities

    Bright X-ray bursts from 1E 1724-3045 in Terzan 2

    Get PDF
    During about 3 years wide field monitoring of the Galactic Center region by the WFC telescopes on board the BeppoSAX satellite, a total of 14 type-I X-ray bursts were detected from the burster 1E 1724-3045 located in the globular cluster Terzan 2. All the observed events showed evidence for photospheric radius expansion due to Eddington-limit burst luminosity, thus leading to an estimate of the source distance (~7.2 kpc). Preliminary results of the analysis of the bursts are presented.Comment: 5 pages, 2 figures, Proc. 5th Compton Symp., Portsmouth 199

    XMM-Newton Finds That SAX J1750.8-2900 May Harbor the Hottest, Most Luminous Known Neutron Star

    Full text link
    We have performed the first sensitive X-ray observation of the low-mass X-ray binary SAX J1750.8-2900 in quiescence with XMM-Newton. The spectrum was fit to both a classical black body model, and a non-magnetized, pure hydrogen neutron star atmosphere model. A power law component was added to these models, but we found that it was not required by the fits. The distance to SAX J1750.8-2900 is known to be D = 6.79 kpc from a previous analysis of photospheric radius expansion bursts. This distance implies a bolometric luminosity (as given by the NS atmosphere model) of (1.05 +/- 0.12) x 10^34 (D/6.79 kpc)^2 erg s^-1, which is the highest known luminosity for a NS LMXB in quiescence. One simple explanation for this surprising result could be that the crust and core of the NS were not in thermal equilibrium during the observation. We argue that this was likely not the case, and that the core temperature of the NS in SAX J1750.8-2900 is unusually high
    • …
    corecore