4 research outputs found

    Assessment of management to mitigate anthropogenic effects on large whales

    Get PDF
    Author Posting. © Society for Conservation Biology, 2012. This article is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Conservation Biology 27 (2013): 121-133, doi:10.1111/j.1523-1739.2012.01934.x.United States and Canadian governments have responded to legal requirements to reduce human-induced whale mortality via vessel strikes and entanglement in fishing gear by implementing a suite of regulatory actions. We analyzed the spatial and temporal patterns of mortality of large whales in the Northwest Atlantic (23.5°N to 48.0°N), 1970 through 2009, in the context of management changes. We used a multinomial logistic model fitted by maximum likelihood to detect trends in cause-specific mortalities with time. We compared the number of human-caused mortalities with U.S. federally established levels of potential biological removal (i.e., species-specific sustainable human-caused mortality). From 1970 through 2009, 1762 mortalities (all known) and serious injuries (likely fatal) involved 8 species of large whales. We determined cause of death for 43% of all mortalities; of those, 67% (502) resulted from human interactions. Entanglement in fishing gear was the primary cause of death across all species (n= 323), followed by natural causes (n= 248) and vessel strikes (n= 171). Established sustainable levels of mortality were consistently exceeded in 2 species by up to 650%. Probabilities of entanglement and vessel-strike mortality increased significantly from 1990 through 2009. There was no significant change in the local intensity of all or vessel-strike mortalities before and after 2003, the year after which numerous mitigation efforts were enacted. So far, regulatory efforts have not reduced the lethal effects of human activities to large whales on a population-range basis, although we do not exclude the possibility of success of targeted measures for specific local habitats that were not within the resolution of our analyses. It is unclear how shortfalls in management design or compliance relate to our findings. Analyses such as the one we conducted are crucial in critically evaluating wildlife-management decisions. The results of these analyses can provide managers with direction for modifying regulated measures and can be applied globally to mortality-driven conservation issues.We thank S. and H. Simmons for funding for this project

    Effect of fortification of fresh cow milk with coconut milk on the proximate composition and yield of warankashi, a traditional cheese

    Get PDF
    Cheese is a concentrated dairy product produced by acid or rennet coagulation or curdling of milk, stirring and heating the curd, draining off the whey, collecting and pressing the curd. The effect of partial substitution of fresh cow milk with coconut milk on the yield and proximate composition of cheese was examined. Extracted coconut milk was mixed with fresh raw cow milk at varying proportions of 5%: 95%, 10%: 90%, 15%: 85%, 20%: 80%, 25%:75%, 70%: 30% and the control (0%:100%) to produce cheese. The control and the partially substituted cheeses were stored in a refrigerator and examined for sensory quality, percentage yield, total titrable acidity, and proximate analysis. The yield of cheese showed significant (p< 0.05) decrease from 26.71% (control sample) to 13.55% as the level of coconut milk increased. The total titrable acidity of cheese was found to be between the ranges of 0.20% - 0.29% which displayed a significant increase from 0.20% - 0.29%. The protein content of the cow-coconut cheese blends showed a significant difference (p<0.05) and an increase of 14.05%-15.33% (at 5%-30% substitution of coconut milk), with the control sample having 13.75%. There was also an increase in fat content from 9.20% - 9.64% (5% - 30% substitution of coconut milk, with the control sample having 8.94%. There was a decrease in the carbohydrate content of the cheese blends which ranged between 8.23% -2.82%, with the control sample having 9.60%. There was a significant decrease (p<0.05) in the ash content of the cow-coconut cheese blends, with the control sample having 1.02%. Significant difference (p<0.05) was observed in the colour, aroma, taste, texture, and overall acceptability as influenced by varying proportions of added coconut milk. The blend with 5% coconut milk and 95% cow milk was most acceptable by panellists. The work showed the potential of coconut as an alternative source of milk in cheese making with improved nutritional value and consumer acceptability
    corecore