255 research outputs found

    Essential role of autoactivation circuitry on Aurora B-mediated H2AX-pS121 in mitosis

    Get PDF
    Shimada, M., Goshima, T., Matsuo, H. et al. Essential role of autoactivation circuitry on Aurora B-mediated H2AX-pS121 in mitosis. Nat Commun 7, 12059 (2016). https://doi.org/10.1038/ncomms1205

    Distinctions in Fine-Scale Spatial Genetic Structure Between Growth Stages of Picea jezoensis Carr.

    Get PDF
    Conifers in northern forests, such as fir and spruce, preferably regenerate on coarse woody debris, including fallen logs, stumps, and snags. In northern Japan, the sub-boreal conifer species Picea jezoensis is completely dependent on coarse woody debris for seedling establishment. To understand the fine-scale spatial genetic structure (FSGS) of this species, a 5-ha plot was established in central Hokkaido, and 531 individual trees were categorized into four life-stages (seedling, sapling, juvenile, and mature) on the basis of age and size. The FSGS of the established seedlings and later growth stages was investigated using 11 nuclear simple sequence repeat loci. A STRUCTURE analysis of seedlings and saplings established on fallen logs revealed that genetically related individuals were spatially localized between adjacent logs. We also found a significant FSGS in early life-stages based on a decline in the kinship coefficient calculated between individuals over shorter to longer spatial distances. Furthermore, the estimation of dispersal kernels indicated the frequent occurrence of short-distance seed dispersal. These results indicated that genetically related seedlings and saplings regenerated on the same or nearby fallen logs. In contrast to the results for the early stages, mature-stage trees showed no significant FSGS. We ran a simulation to examine the hypothesis that the FSGS could be eliminated by demographic thinning during life history processes. We calculated values for simulated offspring generated under three sets of conditions; i.e., by removing (i) inbred individuals, (ii) randomly chosen individuals, and (iii) all individuals on the specific fallen logs. However, the results for the FSGS were significant for all simulated data sets. This indicated that inbreeding depression, stochastic loss, or eradication of establishment sites by local disturbances alone could not explain the lack of FSGS among mature-stage trees. Therefore, it is possible that the colonization history of mature trees present on the study site might differ from that of the current offspring

    Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1) gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy) mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study.</p> <p>Results</p> <p>In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit.</p> <p>Conclusion</p> <p>Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder.</p

    Achievement levels of students on clinical nursing practice for chronic illness

    Get PDF
    実習目標の到達度及び実習目標間の関係を明らかにするために,74名の学生による実習目標の自己評価を分析した。その結果,実習目標の到達度は,「自己の看護観や自己成長を培う」が最も高かった。そして「疾患の病態生理や検査・治療についての理解と看護援助」「セルフケアに向けた看護援助」「危機に直面している患者の看護援助」などの看護実践面に関する目標が高値を示していた。学生は目標に沿った看護を実践する中で,経験したひとつひとつのケアを意味づけたり,看護とは何かを探求していったと思われ,それが看護観の形成や自己成長につながっていったものと考えられた。実習目標間の関係では,各実習目標との間に相関が見られ,それらは信頼性のある妥当な慢性期看護実習の目標であることが確認された。This paper is designed to demonstrate the relationships between each objective and the students' achievement levels for the objectives of clinical nursing practice. Seventy four students evaluated their own achievement levels related to their clinical nursing practice. Evaluation scores for each objective were analyzed. The following results were obtained: The objective of cultivating the view of nursing and developing themselves had the highest score. Understanding the mechanism of disease, physical examination and treatment, and patient care, understanding nursing care toward patient's self care, and understanding nursing care for patient in crisis had high scores. The students, through their own nursing care, explored the meaning of each care (or each experience) and inquired about the nature of nursing. Their view of nursing and self development was formed from their own various experiences. Correlation among each objective was found. Each for clinical nursing practice has reliability and validity

    Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuronal nitric oxide synthase (nNOS) is involved in the regulation of a diverse population of intracellular messenger systems in the brain. In humans, abnormal NOS/nitric oxide metabolism is suggested to contribute to the pathogenesis and pathophysiology of some neuropsychiatric disorders, such as schizophrenia and bipolar disorder. Mice with targeted disruption of the nNOS gene exhibit abnormal behaviors. Here, we subjected nNOS knockout (KO) mice to a battery of behavioral tests to further investigate the role of nNOS in neuropsychiatric functions. We also examined the role of nNOS in dopamine/DARPP-32 signaling in striatal slices from nNOS KO mice and the effects of the administration of a dopamine D1 receptor agonist on behavior in nNOS KO mice.</p> <p>Results</p> <p>nNOS KO mice showed hyperlocomotor activity in a novel environment, increased social interaction in their home cage, decreased depression-related behavior, and impaired spatial memory retention. In striatal slices from nNOS KO mice, the effects of a dopamine D1 receptor agonist, SKF81297, on the phosphorylation of DARPP-32 and AMPA receptor subunit GluR1 at protein kinase A sites were enhanced. Consistent with the biochemical results, intraperitoneal injection of a low dose of SKF81297 significantly decreased prepulse inhibition in nNOS KO mice, but not in wild-type mice.</p> <p>Conclusion</p> <p>These findings indicate that nNOS KO upregulates dopamine D1 receptor signaling, and induces abnormal social behavior, hyperactivity and impaired remote spatial memory. nNOS KO mice may serve as a unique animal model of psychiatric disorders.</p
    corecore