318 research outputs found

    Measurement of neutral mesons in p + p collisions at √s = 200 GeV and scaling properties of hadron production

    Get PDF
    The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the invariant differential cross section for production of K^_, ω, η', and φ mesons in p + p collisions at √s = 200 GeV. Measurements of ω and φ production in different decay channels give consistent results. New results for the ω are in agreement with previously published data and extend the measured pT coverage. The spectral shapes of all hadron transverse momentum distributions measured by PHENIX are well described by a Tsallis distribution functional form with only two parameters, n and T, determining the high-pT and characterizing the low-pT regions of the spectra, respectively. The values of these parameters are very similar for all analyzed meson spectra, but with a lower parameter T extracted for protons. The integrated invariant cross sections calculated from the fitted distributions are found to be consistent with existing measurements and with statistical model predictions

    Azimuthal correlations of electrons from heavy-flavor decay with hadrons in p+p and Au+Au collisions at √ sNN = 200 GeV

    Get PDF
    Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled p+p collisions. These measurements indicate that charm and bottom quarks interact with the hot dense matter produced in heavy-ion collisions much more than expected. Here we extend these studies to two-particle correlations where one particle is an electron from the decay of a heavy-flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interactions between heavy quarks and the matter, such as whether the modification of the away-side-jet shape seen in hadron-hadron correlations is presentwhen the trigger particle is from heavy-meson decay andwhether the overall level of away-side-jet suppression is consistent. We statistically subtract correlations of electrons arising from background sources from the inclusive electron-hadron correlations and obtain two-particle azimuthal correlations at √ sNN = 200 GeV between electrons from heavy-flavor decay with charged hadrons in p+p and also first results in Au+Au collisions. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to p+p collisions

    Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central dd++Au Collisions at sNN\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of azimuthal dihadron correlations near midrapidity in dd++Au collisions at sNN\sqrt{s_{_{NN}}}=200 GeV. These measurements complement recent analyses by experiments at the Large Hadron Collider (LHC) involving central pp++Pb collisions at sNN\sqrt{s_{_{NN}}}=5.02 TeV, which have indicated strong anisotropic long-range correlations in angular distributions of hadron pairs. The origin of these anisotropies is currently unknown. Various competing explanations include parton saturation and hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies in dd++Au collisions compared to those seen in pp++Pb collisions at the LHC. The larger extracted v2v_2 values in dd++Au collisions at RHIC are consistent with expectations from hydrodynamic calculations owing to the larger expected initial-state eccentricity compared with that from pp++Pb collisions. When both are divided by an estimate of the initial-state eccentricity the scaled anisotropies follow a common trend with multiplicity that may extend to heavy ion data at RHIC and the LHC, where the anisotropies are widely thought to arise from hydrodynamic flow.Comment: 375 authors, 7 pages, 5 figures. Published in Phys. Rev. Lett. v2 has minor changes to text and figures in response to PRL referee suggestions. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV

    Get PDF
    We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and 62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative to scaled p+p cross sections obtained from other measurements (R_AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement.Comment: 365 authors, 10 pages, 11 figures, 4 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of higher cumulants of net-charge multiplicity distributions in Au++Au collisions at sNN=7.7200\sqrt{s_{_{NN}}}=7.7-200 GeV

    Full text link
    We report the measurement of cumulants (Cn,n=14C_n, n=1\ldots4) of the net-charge distributions measured within pseudorapidity (η<0.35|\eta|<0.35) in Au++Au collisions at sNN=7.7200\sqrt{s_{_{NN}}}=7.7-200 GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. C1/C2C_1/C_2, C3/C1C_3/C_1) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of C1/C2=μ/σ2C_1/C_2 = \mu/\sigma^2 and C3/C1=Sσ3/μC_3/C_1 = S\sigma^3/\mu can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.Comment: 512 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for publication in Phys. Rev. C as a Rapid Communication. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Double Spin Asymmetry of Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s)=200 GeV

    Full text link
    We report on the first measurement of double-spin asymmetry, A_LL, of electrons from the decays of hadrons containing heavy flavor in longitudinally polarized p+p collisions at sqrt(s)=200 GeV for p_T= 0.5 to 3.0 GeV/c. The asymmetry was measured at mid-rapidity (|eta|<0.35) with the PHENIX detector at the Relativistic Heavy Ion Collider. The measured asymmetries are consistent with zero within the statistical errors. We obtained a constraint for the polarized gluon distribution in the proton of |Delta g/g(log{_10}x= -1.6^+0.5_-0.4, {mu}=m_T^c)|^2 < 0.033 (1 sigma), based on a leading-order perturbative-quantum-chromodynamics model, using the measured asymmetry.Comment: 385 authors, 17 pages, 15 figures, 5 tables. Submitted to Phys. Rev. D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear matter effects on J/ψJ/\psi production in asymmetric Cu+Au collisions at sNN\sqrt{s_{_{NN}}} = 200 GeV

    Full text link
    We report on J/ψJ/\psi production from asymmetric Cu+Au heavy-ion collisions at sNN\sqrt{s_{_{NN}}}=200 GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J/ψJ/\psi yields in Cu++Au collisions in the Au-going direction is found to be comparable to that in Au++Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J/ψJ/\psi production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-xx gluon suppression in the larger Au nucleus. The relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.Comment: 349 authors, 10 pages, 4 figures, and 4 tables. Submitted to Phys. Rev. C. For v2, fixed LaTeX error in 3rd-to-last sentence. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore