5 research outputs found

    PROCESSOR ARCHITECTURES FOR FAST COMPUTATION OF MULTI-DIMENSIONAL UNITARY TRANSFORMS.

    Get PDF
    This work presents the development of new algorithms and special purpose sequential processor architectures for the computation of a class of one-, two- and multi-dimensional unitary transforms. In particular, a technique is presented to factorize the transformation matrices of a class of multi-dimensional unitary transforms, having separable kernels, into products of sparse matrices. These sparse matrices consist of Kronecker products of factors of the one-dimensional transformation matrix. Such factorizations result in fast algorithms for the computation of a variety of multi-dimensional unitary transforms including Fourier, Walsh-Hadamard and generalized Walsh transforms. It is shown that the u-dimensional Fourier and generalized Walsh transforms can be implemented with a u-dimensional radix-r butterfly operation requiring considerably fewer complex multiplications than the conventional implementation using a one-dimensional radix-r butterfly operation. Residue number principles and techniques are applied to develop novel special purpose sequential processor architectures for the computation of one-dimensional discrete Fourier and Walsh-Hadamard transforms and convolutions in real-time. The residue number system (RNS) based implementations yield a significant improvement in processing speed over the conventional realizations using the binary number system. As an illustration of the factorization techniques developed in this work, novel sequential architectures of RNS-based fast Fourier, Walsh-Hadamard and generalized Walsh transform processors for real-time processing of two-dimensional signals are presented. These sequential processor architectures are capable of processing large bandwidth (\u3e 5 M.Hz) input sequences. The application of the proposed FFT processors for the real-time computation of two-dimensional convolutions is also investigated. A special memory structure to support two-dimensional convolution operations is presented and it is shown that the two-dimensional FFT processor architecture proposed in this work requires less hardware than the conventional implementations. The FFT algorithms and processor architectures are verified by computer simulation.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis1981 .N246. Source: Dissertation Abstracts International, Volume: 42-08, Section: B, page: 3366. Thesis (Ph.D.)--University of Windsor (Canada), 1981

    Early short course of neuromuscular blocking agents in patients with COVID-19 ARDS: a propensity score analysis

    Get PDF
    Background: The role of neuromuscular blocking agents (NMBAs) in coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS) is not fully elucidated. Therefore, we aimed to investigate in COVID-19 patients with moderate-to-severe ARDS the impact of early use of NMBAs on 90-day mortality, through propensity score (PS) matching analysis. Methods: We analyzed a convenience sample of patients with COVID-19 and moderate-to-severe ARDS, admitted to 244 intensive care units within the COVID-19 Critical Care Consortium, from February 1, 2020, through October 31, 2021. Patients undergoing at least 2 days and up to 3 consecutive days of NMBAs (NMBA treatment), within 48 h from commencement of IMV were compared with subjects who did not receive NMBAs or only upon commencement of IMV (control). The primary objective in the PS-matched cohort was comparison between groups in 90-day in-hospital mortality, assessed through Cox proportional hazard modeling. Secondary objectives were comparisons in the numbers of ventilator-free days (VFD) between day 1 and day 28 and between day 1 and 90 through competing risk regression. Results: Data from 1953 patients were included. After propensity score matching, 210 cases from each group were well matched. In the PS-matched cohort, mean (± SD) age was 60.3 ± 13.2 years and 296 (70.5%) were male and the most common comorbidities were hypertension (56.9%), obesity (41.1%), and diabetes (30.0%). The unadjusted hazard ratio (HR) for death at 90 days in the NMBA treatment vs control group was 1.12 (95% CI 0.79, 1.59, p = 0.534). After adjustment for smoking habit and critical therapeutic covariates, the HR was 1.07 (95% CI 0.72, 1.61, p = 0.729). At 28 days, VFD were 16 (IQR 0–25) and 25 (IQR 7–26) in the NMBA treatment and control groups, respectively (sub-hazard ratio 0.82, 95% CI 0.67, 1.00, p = 0.055). At 90 days, VFD were 77 (IQR 0–87) and 87 (IQR 0–88) (sub-hazard ratio 0.86 (95% CI 0.69, 1.07; p = 0.177). Conclusions: In patients with COVID-19 and moderate-to-severe ARDS, short course of NMBA treatment, applied early, did not significantly improve 90-day mortality and VFD. In the absence of definitive data from clinical trials, NMBAs should be indicated cautiously in this setting

    Progress in Drug and Formulation Development for the Chemoprevention of Oral Squamous Cell Carcinoma: A Review

    No full text
    corecore