University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1981

PROCESSOR ARCHITECTURES FOR FAST COMPUTATION OF
MULTI-DIMENSIONAL UNITARY TRANSFORMS.

HARI K. NAGPAL
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

NAGPAL, HARI K., "PROCESSOR ARCHITECTURES FOR FAST COMPUTATION OF MULTI-DIMENSIONAL
UNITARY TRANSFORMS." (1981). Electronic Theses and Dissertations. 3199.
https://scholar.uwindsor.ca/etd/3199

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/3199?utm_source=scholar.uwindsor.ca%2Fetd%2F3199&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

'\'~| .] B ~
1 l* National Library of Canada .
. Collections Development Branch

Cdhadian Theses on W

" Microfiche Servjce sur microfiche

\7‘

NOTICE

o4

" The. quality of this microfiche is heavily dependent
upon the quality of the original thesis submitted for
microfilming. Every effort has been made to ensure
the highest quality of reproduction possible.

[
. If pages are missing, contact the university which
granted the degree.

, 3 Some pages may have indistinct print especially
if. the original pages were typed with a poor typewriter
ribbon or if the university sent us a poor photocopy.

Previolsly copyrighted materials (journal articles,
published tests, etc,} are not filmed. .

- .

Reproduction’ in full or in part of this film is gov-
erned by the Canadian Copyright Act, R.S.C. 1970,
c. C-30. Please read the authorization forms which
accompany this thesis.) :

’

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

)

Ottawa, Canada
K1A ON4

Bibliothdque nationale du Canada:
Birection du développement des collections ‘ .

Service des théses canatiennes

La qualité de cette microfiche dépend grandement de
la qualité de la thése soumise au microfilmage.”Nous
avons tout fait pour assurer une qualité supérieure
de reproduction.

Sl manque des pages, veuillez communiquer
avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut
laisser & désirer, surtout si les pages originales ont été
dactylographiées a I'aide d’un ruban usé ou si I'univer-
sité nous a fait parvenir une photocopie de mauvaise
qualité. -

Les documents qui font déja l'objet d'un droit
d’‘auteur (articles de revue, examens publiés, etc.) ne
sont pas microfilmés. o

La reproduction, méme partielle, de ce microfilm
est soumise 3 la Loi canadienne sur le droit d‘auteur,
SRC 1970, c¢. C-30. Veuillez prendre .connaissance des
formules d‘autorisation qui accompagnent cette thése.

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'’AVONS RECUE

NL-339 (Reov, 8/80}

—

e PROCESSOR ARCHITECTURES FOR FAST

Ve

I3

COMPUTATION OF MULTI-DIMENSIONAL

UNITARY TRANSFORMS

Heri K. Nagpal
e

. A Dissertation
Sutmitted o the Faculty of Graduate Studies
through the Department of Electrical Engineering
in partial fulfiliment of the requirements
for the Degree of Doctor of Philosophy at the
University of Windsor

Windsor, Ontario, Canada

1981

___l".. e i e —————————

7 © ABSTRACT

L4

This work presents the development of new algorithms and special '

purpose sequential processor architectures for +the computation

‘ .of a class of one-, two- and multi-dimensional unitary .

transforhs.

In particular, & technique is presented/to factorize the trans-

formation matrices of a class of multi-dimensional unitary transforms,

" having separable kernels, iﬁto products of spérse metrices. These

sparse matrices consist of Kronecker products of factors of the one-
diméﬁsional transformation matrix} Such factPrizatjoqs,result in
fast algoritims for the cdmputation.of a variety of ﬁulti-dimenéional
unitaryltrapsforms including Fo;rier, Waiéh—ﬁad&mard‘and generalized
Walsh.tfansforms. It is shown that the u-dimensional Fourier and
géneralized Whlsﬁ transforms can be implemented with a u-dimensional
radix-r buttegfly operation requiring‘cohsiderably fewer complex
miltiplications than the conventionsl implementation usiﬁg 8 one-
‘dimensional radix-r butterfly operafioﬁ. |

Resi@ne number principlés and techniqn%s are applied to develop
novel special purpose sequentisl processor architectures for the
computation of cne-dimensional discrete Fourier and Walsh-Hadamard
transforms and convolutions in real-time. The(residue number

system .{RNS) ©based implementations yield & significant

improvemen®®in processing speed over the conventional realizations

(1)

using the binary_number systeiﬁl
.As an illustration of the factorizetioﬁ techniques developed in

'“this woﬁk novel sequential erchitectures of RNS—based fast Fourler, Walsh-

Hadamard and’ generallzed Walsh transform processors for reel-time s

p;ocessing of two-dimensional gsignals are presented. These sequential
processor architebtures‘sre'cspable of processing large bandwidth
(> 5 M.Hz) 1nput sequences. .

* The applicetion of the proposed FFT processors for the real-
time computetlon of twowdlmen51onel.convolutions is also investigated.
A special memory spructpre to support two-didensional convolution -
operations is presented and it is shown thsp the two—dimensionel FFT
processor architecture proposed in this work requires less hardware than
the' conventional implementations. /,&he FFT slgorithms end processor

‘architectures are verified by .ccmputer simulation.

5

(11)

ACKNOWLEDGEMENTS
i)
A
T would like to express my sincere thanks and appreciation to my
supervisors, Dr. J.4. SAItis and Dr. G.A. Jullien, for their

" invaluable advice, belp and constent encouragement throughout the
Lo progress of this research. The valuable advice of Dr. W.C. Miller
; and other faculty members is gratefully acknowledged. In addition,

' the help of many of the graduate students.and Mr. J. Novasad is

' &

sincerely apﬁreciated.

)

To my parents and ﬁrothers, I extend my sincerest thanks and

gratitude. Without their help and inspiration, this wofk would not

Foo pave started. .
Thanks are also due to Mrs. Marion Campeau for her diligence in

typing this thesis.

(111) . S

" TABLE OF CONTENTS. ‘ \N_

.KBSTRACT_ ‘
 ACKNOWLEDGEMENTS
. TABLE OF CONTENTS

LIST OF FIGURES
‘.‘“_LI‘ST; OF SYMBOLS

t ©° . LIST OF APPENDICES . \

CHAPTER 1 INTRODUCTION

BN

SN Ll Unlﬁgry Transform Implementation _
' 1.2 Objectiwve and Outline of the Research

1.3 Thesis Organlzatlon

~-

CﬁAPTER 2 °, ONE-DIMENSJIONAL UNTTARY TRANSFORM ALGORITHMS
Y i 2.1 Introduction

.. 2.2 One-Dimensionsal ﬁnitary Transforms

2.3 One=Dimensional Discrete Fourler Transform
‘ _ o Implementatlon

2.3.1. One-Dimensional 0I00 FFT Algorlthm
and its ‘Tmplementation -

_ . . 2.h One-Dimensional Walsh-Hadamard Transform and
- ') its Implementation

2.4.1 Dyadic-Ordered Fast WHT Algorlthm and
. its Tmplementation

2.5 Residue Number System
2.5.1 Residue Number System Concepts
2.6 Summary

(iv) . .

Page

(1)

(1i1)

(iv)

(vii)

(x%)

(xiv)

11
13

15

15
16
19

24
3
33
37

38
hl

.+ ° CHAPTER 3 RESIDUE NUMBER SYSTEM BASED ONE—DIMENSIONAL
PROCESSORn mcmcmss -

‘.

3.1° Introduction
| ’ . 3.2 An RNS-Based Butterfly Unlt's Archltecture

3.3 A One-Dimensional RNS—Based FFT Processor
Architecture

Lo _ S) R . 3.3.1.System Organization of a RNS-Based
©) . . ‘TTT Processor'

3.4 - Processor Organization to Obtain the DFT
- of Smaller Sequences

. 3.5 Processor Organization to Compute IaD -
i . Convolutions of Real-Valued Sequences®

Processor Architecture
3.7 Sumary

CHAPTER h MULTI—DIMENSIONAL ALGORITHMS AND PROCESSOR

TRANSFORMS -

_ ' B
4.1 Tntroduction
i : L . 4,2 Multi-Dimensional Unitary Transforms

4.2.1 Multi-Dimensional Unltary Transform
Mgorithms:

| 4.2.2 Multi-Dimensional Discrete Fourier
! Transform

:4.2.3 Two-Dimensional FFT Processor
Organization

4.2.4 RNS-Based 2-D FFT Processor Orgenization 107 .
110 -

4.2.5 Multi-Dimensional Generalized Walsh

and Walsh-Hadamard Transform Algorithms

4.2.6 Other Multi-Dimensional Unitary
Transform Algorithms

4.3 Sumsry

(v)

3.6 A One-Dimensional Walsh-Hadsmard Transform['

v . ARCHITECTURES FOR COMPUTING A CLASS OF UNITARY -

lﬁ5

16
S5k

.58

62

69

1.

78

8o

80
81
8

90

96 .

15 .

116

CHAPTER 5 HIGH SPEED CONVOLUTION

5.1 Introduction

5.2 Two-Dimensional Convolutlon Using a 2-D -

FEIT Processor ‘ <§

5.3 . 2-D Convolutlon Using 1-D FPFT Processor

5.4 2-b Cbnvolutlon Using NTTs
5.5 Sumsxy

CRAPTE:\s ., HARDWARE 'REQUIREMENT AND STMULATTON OF THE
, FFT PROCESSOR DESIGNS

- 6.1 Introduction
. 6.2 Hardware Requlrements

6.4 Summary

*

CHAPTER 7 CONCLUSIONS

REFERENCES
.APPENDICES

VITA AUCTORIS

6.3 Simulation of the FFT Processor Designs

s
-
18
119

131
138
.140

< 1he
142
143

147
154

157

161
166

181

Figure
2.1
2.2
2.3
2.4
3-1'.

3.2

3.3

3.4

3.5(sa) ‘

(b)

346

.3'7
3.8

3‘9
3.10(a}
(b)

. NUnit for the Modulus m

LIST OF FIGURES

EB;):S) Transformation Ma.trices of {(a) DFT (b) WHT.
¢} HT

ﬂemory Oréanization of the 1-D FFT érocessor
A Sequential WHT Processor

A Pipelined ROM Array v

A Slmplmfied Rlock Dlagram of a RNS-Based Butterfly
: ‘

A ROM Implementation of the Redix-% Butterfly Unit
for the Modulus m; ’

Original Scaling Algorithm for N = 6 and's = 3

ROMs Storing the Twiddle Factors for a Radlx-h FFT

Processor.

Organization of a RNS-based 1-D FFT Processor

Interconnections of SUBs'@f . BUFl to Form Shift-
Register of Size N

. . .
- Buffer Allocation for Real-Time Computation of a

Transform When the Number of Stages in the FFT sre
(a) even (b) ocad

System Organization of a RNS-Based 1-D Radix-h FIT

, Processor .

FFT Processor Configuration for Processing Smaller
Sequences

Input Buffer Configuration for Smaller Sequences
Generation of Camplex Input to FFT Processor

Timing Diagram
4

(vii)

.20

29

36

Lo

50

33

25

°T
2T

29

60

68

68
T2
T2

3.12(&)
" ()

4.1
h.2
4.3(a}

(v} .

L.}
L5

h.6(a)

()

L7

5.1
5.2(a)
(v)

5.3

5.

5.5

5.6

FFT Processor Buffer Allocatlon for Sectioned
Convolutions : . AN

Generation of- Real-Ouxput Seqpence from the Complex

FFT Processor Output

Timing Diagram .
A 2-D Seq;\:l'ence. ’ ’
Partiﬁioning of (16x16) Arrey into Sub-Blocks

5-D Radix-r Processor Organization

' Sub-Division of a Block into Sub-Blocks

A 2-D Radix-2 Butterfly Operstion

Flow Graph of 2-D Radix-2 0IO0 Algorlthm for a

(8x8) Array

FFT Processor Organization for Real-Time I/0 .

§
\
A Real-Time Buffexr Organizatlon for a 2-D Radix>2
FFT Processor

‘A RNS-Based 2-D Radix-2 Butterfly Structure

Sections of an (NxN) Matrix
Input Data Memory Sections ‘ e

Save Memory Sections

. A 2-D Radix-2 Convolver Organization

N .
Formation of Complex-Input to the FFT Processor for
Simulteneous Processing of Two Data Sections

Formation of an {MxM) Block Using Data Accessed from
(a) The Data Sections 1 sand 2 (b) The Data Sections
% and (2+1)}, and the Save Memory Sections.

FFT Processor Buffer Allocation and Timing Diagram for

Processing Successive Date Sections.

b
+

(viii)

Th
Th

93
9T
99
99
103

105

106

108

122
123
123
125

125

. 126

128

5.7
w - 5.8

- 5.9

6.1(a)

(a)

' 6.2(a)
b ®)
' | (e)
(a)

(b)

()

o I (6)
| (c)

A 2D Convolver Orgenization Using 1-D FFT Processor .

A 2-D Convolver Organization Using 1D FFT Processor
Wijth 3 External Memories =~ -

4

Allbcation of Memories TS;, TS, and TS3 for Continuous
Operation of & 1-D FFT Processor

Input Speech Signal
Qutput, of the 0I00 FFT Algorithm

Output of the Standard DIT FFT' Algorithm

o 6.3(s) .

Error’ Between the Outputs Ge.nera.ted by the 0I00 and
DIT FFT Algo:ci'bhms

Input Speech Sigt_lal

Output of the FFT Processor Simulator

Output of the 0I00 FFT Algorithm -

Error Between the Outputs Generated b:;r the Simulator
and the 0IC0 FFT Algorithm -

Iriput Image

Filtered Image Usmg the 2-D Radix-2 FFT Processor/
Convoler

Filtered Image Using the Conventional Technique of
Computing the 1-D DFT Along the Rows and then Along
the Columms. .

(ix)

132

136

136

148
148
g
149

152
152
153 -
153

155

-155

"155

Table

1.1

LIST OF TABLES

Comparison of FFT Rea.'].izs.t‘ions

Al

Package Requlremen for the];_mplementa.tion of & .
2-D Radix-2 (64x64)point FFT Processor/Convolver
for a& 6 Moduli RNS with 3 Scaling Moduli

{x)

‘ Package Requirement for the Implementatlon of a
" 1-D Radix-h lGEh-point FFT Processor/Convolver for
a 6 Moduli RNS with 3 Scaling Moduli

e

1hh

L6

B

s(r) s(—_r).‘

o | |
'LIST OF SYMBOLS ™' - o ‘
-'i v
Qne-dfmensionhl
Two-dimensional

u-dimensional

Quasi-diagonal Matrix of size (loxk) specifying
multiplication by QQF twiddle factors

Vector containing the input of a Unitary Transformation

Vector containing the 1nput to the 1th stage of a
Unitary Transform

-

Vector contalnln the output of the DFT .
Tdentity Matrix £ size (ixk)

containing the transformed sequence
Base-r permutation operstor ofithe iﬁh stage
Integer conversion factor

Base-2 perfect shuffle operator of size (NxN)

Base-r perfect shuffle operator of size (MxM)

- Radix of the FPFT algorithm

ith residue of a number modulo m.

Multi-dimensional r-point transform operator for the
mth stage

Radix-r transform operator
Radix-r transform operator for the mth stage
Multi-dimensional unitary transform qptrix

Unitary transformation matrix of size (MxM)

-

(x¢) 7

A @B

' One-dimensional wnitary transformation matrixiéf a

multi-dimensional transform in the ith dihension

Dimension of an multi-dimensional array

emden

Bage-r twiddle factor operator for the mth stage

ith.factof of a uwnitary transformation matrix
N

Multi-dimensional base-r twiddle factor operator for
the mth stage :

Access-time of a bufferfROM

Complex conjugate of the matrix G -d“\\\
Transpose of the matrix enclosed

%, kth element of the matrix enclosed

The closest integer té the term enclosed
Krconecker pth power of the metrix enclosed
Kronecker product.of the matrices A and B

The residue of x modulo m.:.L

Al

Multiplicative Inverse of ﬁi modulo m,

Set containing the elements a;

Real—part-of the complex number x
Imaginaryﬁpart of the complex number x
Memory buffer

Natural-order WHT trensformation matrix of size (NxN)
Dyadic-ordered WHT transformation matrix of size (NxN)

Multiplexer unit

(xii)

RNS

{

Rés_idue Kumber System T

Read—Oniy Memory |
Memory Sub-buffer

N
Shift Register .

(xiii)

R |

B

LIST OF APPEEEICES

 APPENDIX A Computer Programs for the Verification 166
of the 2-D Radix-2 0T00 FFT Algorithm and g
the 2-D Convolver Architecture

(xiv)

CHAPTER 1 '

. ~ - INTRODUCTION ‘ .

" In recent years there has been a growing interest in the study of

+

\ unitary transforms in the area of one--and two- dimensional digital

| signal processing. Majogﬁspplications of such transforms ineclude
imege processing, speech processing, feature selection in pattern
récégnition, data compression and generalized spectrallanalysis. For
example, the high frequency terms of the.Fourier trafsform of an image
give an indication of the amplitude and orientation of the edges within
an image. Other apﬁlication% are in trapsform coding in whicﬁ a band-
;idth reduction is achieved by discarding or grossly quantizing low-

ol
magnitude transform coefficients.

\A discrete unitary transform is ch;}acterized by a up}tary matrix

G such.ihat G - [G*]III = I where * denotes a complex conjugate, [-‘]T denctes
8 transpose and I is the identify matrix of the same order as G, say

N. The computation of the transform of an input vector, f, o% dimension
N can be written és & matrix vector multiplication G-f, which usually
requires N2 operations where an oberation is defined aE a mltiplication
and an addition. In 1958 Good [1) propoked a technique to factorize

!

the matrix, G, into a set of sparce matrices, each expressing a.syige

of computation. In 1965 Cooley and Tukey [2] used the approach followed

vy

by Good and developed the Fast Fourier Transform (FFT) algoy: . to
compute the discrete Fourier' Transform (DFT). In genexsl, the FFT
algoritim resulted in the computation of the DFT in (N-r;log N)
operations as compared to N operations required for the Eirect
implementetioﬁ.- Recentiy, the matrix-factorizaﬁioh aﬁproacﬁ-deseribeﬂ
by Good has also bj::Lapp;ied'to deﬁ@&gp fast algorifhms fo¥ the |
computation of Hadamad t3], Walsh [h]?;ﬁear (5], generalized ﬁq1sﬁ
[6]1, -generaiized.Haar [6] and a more general class of orthogonal
transfofmg»[?] These algori%hms also achieve a computational

saV1ng Whlch.ls of the same order as that of the DFT Two new

algorithms (prime factor FFT and Winograd Fourier transform algorithms

{91, [10]) to compute the DFT have also been groposed recently, which

_achleve further sav1ngs in the computation by computing the DFT via

-

* convolution using number theoretic concepts.

- Many of theffast algorithms, reported in the literature, deal with
one-dimensional transforms. Multi-dimensional unitary transforms are

generally computed by takimg one—dimensional transforms, utilizing

 fast one;dimensional unitary transform algorithms, along all dimensions,

successively. The processing speed of the multi-dimensional unitary

“transform algorithms depends on the efficiency of the one-dimensional

-uqitgry transform algor%thm employed, Tn [1] Good also proposed

techniques ﬁb’factorize multi-dimensional transformation matrix:

4
into a set of sparse mayPices containing elements of the one-dimensional

transformation matrix. There is no evidence that this technique of

-

factorization of - multi—dimensional transrormation matrix has been

LA

~used tL deve%op fast algbrlthms for the computatlon of multi—

by
dimensional wmitary transforms Recently, Arambepola and Rayner

[3h] descrlbed a FFT alggrlthm for. the computatlon of multi-

'3
dimensional * 'DFT's which achieves a sav1ngs of more than 25% in the

;number of multipliﬁatlong'over the conventlonal -FFT algorithms. The

fast algorithms for the computatlon of other multl-dlmen51onal unitary
transforms are not well developed in the lltereture

The principal objective of this research work is to develop two-
ane mlti-dimensional unitary transform slgorithms wﬁéch are well
adapted for implementation by & special purpose prooessor for real-
time* processing of two and multi—dimene}onel sgggfls. In
this work, we extend tﬁe idea of matrix facforization groposed by
Good [1] to explore further the redundancy evalieble in zhe transformation
natrices of many witary transforms and present a unified approach.to
the development of fast algorithms for a class of unitary transforms.)
Based on this approach we present the development of fast algorithms for

a number of unitary transforms for real-time digital signal and image

processing applications. Before presenting the approach followed for

‘the implementation of the proposed algorithms and other objectives of

this work we give a brief survey of the various special purpose processor
architectures, proposed in the literature, for the implementation of

unitary transform algorithms.
*

By real-time we mean that the processor accepts the input data and
generates the output data at the same sempling rate, continuously. The
processing delay between an input sequence and the corresponding output
is ignored.

1.1 UNITARY TRANSFORM DPLRMENTATIONS 00 . S
Since“the DFT is an important transform in most dlgltal 51gnal
processing applicatlone the FFT algorithm has been explored
exteneively.l A\detailed derivetlon of the. FFT algorithms can be -
found in 1] and [23] In general there are two basic ver31ons
" of the FFT elgorithm, namely, the decimation-in-timé (DIT) and the
decimation-in-frequency {DIF) algorithm [23]. Both of the two versione
have various structures which require ordered or digit reversed input -
and generate dlglt reversed or ordered output. An FFT elgorlthm
‘computes the ﬁFT ef an N-point seeuence ?or N = rn, in long,stages
and there are g- radix-r butﬁerfly operations'in eech-staée. A redix-r
butterfly operation consists of an r-point DFT oﬁeratien on a set of
r data‘ﬁoints and‘multiplication of the r input dats pointe or the.
result of r-point DFT operetioe by a set of c0mp1ex'coefficient known
as twiddle factors [23]. A radix-2 implementation has the simplest
structure but the efficiency of computetion is improved by eméloying
a higher radix FFT algorithm [26]: | ,
A genersl purpose processor is normally provided with a real
adder, a resl multiplier and memory having a word 1ength.ef one data
point. The software implementation of the FFT algorithm on such a
processor requires 28 memory cycles [23] to perform a radix-2 butterfly
operation. Since there are N/2 log2N butterfly operetlons, the total
time required to compute an N-point DFT is given by 1% - T - N - log,N

where T is the memory access time. This computation time does not

.
) . ' ’
. .
]
. . . . ’
' .

" inelude fhe software overhead‘requdred to compute'the‘data and.twiddle
factor sddresses.. Also,‘additional time is required to.digit'reverse“
" the input or output sequence. ﬁ «
-To- achieve higher processing speeds most of the research effort on
‘the harduare implementation of special purpose FTT processors has been
‘ concentrated on the development of
(1) faster and nevw adder and multiplier structures [19],[27],[28];
(2) Bubtterfly units with overlapped memory and ‘s.rithmetic eycles and
pipeldned arithmetic operations [20],[23],{29];"
—_— .
. (3) memory structures to access multiple words simultaneously to
reduce memory‘access time and to simplify the generation of data
end twiddle factor addresses [11]7[27]. o
The structure of the FFT algorithm has elso been exploited to perfofm)
multlple butterfly operations 51multaneously [16]- [lBT}fﬁEﬁﬁ
Based on the number of Butterfly unlts employed by a FFT processor,
Bergland [30] divided the hardware implementation of the FFT algorithm-
into four categories, namely, the sequential, cascade and barallel
+ iterative processors and the amray}analyzer. Table 1.1 shows some of
the features of the four different realizations. Thé sequential
realization 1s simplest to implement but the slowest of the four
implementations. The cost of the third and fourth.implementation is
very high, which limits their spplications. TFor higm-soeed applications

many forms of cascade processors have been proposed in the literature

[11],[16]- [18J [20] [2k]. Pease [16] and Gold [20] proposed the use

o

rd

-mLE"',_l.l

4

CON[PARISON OF FFT REALTIZATIONS

“a

. |Butterfly Operstions: : -
Realization Buzzizgly Performed In E;?cutlgn
Lo Parallel | Sequential Hne
A | Sequential 1 1 1. m R
2 Cascade m m L T-N—
r T
3 | Pdrallel y N m Tom
Tterative T r
L | Array oY m.l\i 1 T
Analyzer ‘ r T
N = number of point ip in};;ut ‘sequence -
u = log N (number of stages)
\

#7 is the time required to perform a Butterfly operation

)

and includes the time required to generate data and twiddle

factor addresses.

_;_ﬂy -

e

.
.

of serial memories to eliminate the calculation of memoxry addresses

at each stage of the FFT algorithm. wgplchel f11] a1so proposed the

use of serial memories for a high—radix cascade processor. Since

the cost of a cascade processor is.proportional to the number of

‘ Butterfly units employed Corinthios [12]-[15] proposed the use of

serial memories for the implementation of a sequential processor for

moderate cost and medium speed applications. Also the proposéd
memory organization yielded the output Fourier coefficients in a

properly ascending order without the need for pre- or post-ordering

of the data.

" The redundancy in the transformation matrix of Hadamard, Welsh,

. Haar, generalized Walsh, Cosine and many other unitary transforms has

also been eiploited to develop the_corre5ponding fast algorithms.
Similar to the devélopmgnt of the FFT processo¥ proposed in [13],
Corintﬁios [22] proposed the, organization of a Walsh-ﬁadémard
transform processor. The only diffegence between‘the two'processors
is that they specify a different perﬁuﬁation'bf the imtermediate results
and there are no maltiplications:by the twiddle factors in the
Walsh-Hedamard transform processor. In [S] Ahmed has prdposed a
Cooley-Tukey—type algorlthm to compute the Haar transform and thus the
Haar transform can be camputed in & modified form of the FFT processor.
The fast algorithms to compute generalized Walsh [6], Cosine [31]

many other unitary transforms [5],[31},[3%} have structures which are
similar to the FFT algoritlm.

Multi-dimensional unitary transforms are generally computed by

-
gk 2%

: ‘)

takiﬁg one=dimensional unitary transfofﬁ‘along all the dimensions;
successively [31]-[34]. In applications, such as image prd;essing
and seismic data processing, the volume of data handling is quite
large and some form o;p£ﬁlk.storage must\be_used to_store the inppﬁ'
and"outﬁut data., Iin earlieé computgrs the size of available fést.
sccess memory was limited to only a few colums (or rows) ‘of the
two;dimensionai‘ﬁata.to.bg transformed..‘Siﬁgleton [35] and Hunt
[36] have discussed_techniéﬁes-to transform & large matrix of dataiﬁ~‘,
stored in an external bulk store with 11m1ted amount of high speed
memory. Slnce these methods reguired transp051t10n of the matrlx
after the colum (or row) transforms, Anderson [37] proposed a
modification of the Cooley-Tukey aiéorithm to a#oid ?atrix trans-
position and to reducte~Yhe assoéiate@ input /output operations.-

Software impiement ion of the mulii-dimensional transforms on
a general purpose pProcessor with.aux?liary storage results in very

slow processing speeds. Recemt advances in semi-conductor memory have

. resulted in the development'of high density and low cost memory

packages and it is now possible to provide iarge amounts of fast
access'storage.at s reasonable cost. A large improvement in the
computation time of multi-dimensional transforms has also been obtained
by the use of special purpose one-dimensjonal transform processors

or general purpose AYTBY Processors [38]. For very high spéed
applications, such as real-time transmission of pictures at video

rates and real-time filtering of images and roboties, épecial puépose

processors must be developed to cope with the large volume of data.

,"'.'Ic‘:shi,'mDpna:ld'ei; al. [21] have propo's'ed a high speed multiprocessor
architecture sulteble for realizfng s 510%512 point FFT in under 1/30
(of a Qecdnd. | This'prdcessér S been realized wifh 16 one~-dimensional
Butterfly un.:i‘.t_é ‘Iaz.:d a number of memory units. _
In the above discussion on the implementation of the unitary
transfo#m it wﬁs fmplied thét.all t}e compﬁtutat;ons'are perfoﬁmed
ﬁsing the binary number sxséem (fixed pdint or floating point).
Receﬁtly, the residue nuﬁbe; systep-CRNSl has received considerable
attention for the implementation of digifal‘signal Processing elemeﬁts
[32]«[%4]. The use q? RNS técﬁniques.has been proposed for the implemehé—\
ation of recursive and non-recursive filters [39],th2],{h3} DFT [LO],

[¥1] and Number theoretic transforms [25]. ° The unique advantage of

F the RNS, as compared to the binary numberléystem, is that the binary

operations of addition, subtraction and multiplication can be

performed using a number of independent angd parallel paths., Addition

and subtraction have no inter-digit carries or borrows and multiplication

does not need the generationnof partial products, thus result%pg in fast

operating spe®l. Also these operations may be performed at very high

‘speed by tﬁe use of ROMs to provide parallel arrayS;Qfﬁiook—up tables
[3a].

From this discussion ;n the implementation of one- and multi-
E dimensional unitary transforms the conclﬁsion that emérges is that a
. general purpose processor is incapable of satisfying the very high

throughput rate requirement of many real-time applications and thus a

L.

Vet e o i A A et e A e ek et 4 ot amm T aASmembie PRV 3 RN PR B W U YR SO,

10

N\

épecial'purpose proceésor must be realized., In o}der to design ﬁ
special purpoée.processor 6ne must consider7various opticns énd
examine the tradeoffs that must be made. The architecture éf a’
special pu}pose processor is usually dictated Ey the performance

and cost feQuire@ents. Due to thé_inherent structural properties

of the various wnitary transform algorithms, & special purpose
processor can be designed with increasing degrees of parallelism,
performance and cost. " Out of the four catagorieé of the FFT
procassors, diScﬁssed eérlier, é caé;ade_architgcturg satisfies

the processing speed requirement of ﬁﬁst of the real-time appiications
-and a ﬁumbe; of different cascade processors have been proposed

in the litersture. Sequentisl architectures heve normslly been v
considered for medium speed applfcations because of the limited (i:
c;mputationa; power; A significant imprpvement_in the processingAspeed of a
sequential prdcessor has been obtained by.employing various pipelining
techniques in the design of the arithmetic unit and special memory
.struptures. The major factor which limits the processing speed.of\

& sequehtial processor isfthe speed 1imitations'associated with the
binary multiplications. Although various hardware inits are - 0
commercially available, higher speed can only be obtained at higher

cost and complexityf Fortﬁnately, the residue number ﬁystem can be .

used to overcame some of the problems associated with the binary number

system.

Another oblJective of this work is to exploré the application

RARRTE-3 ’
of residue number techniques to the implementation of unitary

>

transforms by & special. purpose sequential processor for real-time
~digital signal and image process§gg. Although we have already given
a preview of the objective of this work, we restate it again for

clarity. - . | . _;f

Al

1.2 OBJECTIVE AND OUTLINE OF THE RESEARCH
The prinecipal objective of this research is to expl;re_further

the redundancy available in the transformation matrix of one- and

: multi—dimensional wmitary transforms and to proposé special purpose
processor architectures for redl-time processing of one- and ﬁnlti—‘
dimensional signals. Because of the recent advances in memory
technology;and the development of high speed, high density and
inexpensive memory IC's, it is~%ecominé morezénd more attractive to

trade logic gates for memory packages, we explore the use of KNS

~

technlques to the lmplementat 1of hlgh speed processors. Since
the ROM oriented lmplementatlon of ‘a S-based 'Butterfly unit allows
pipelining of the basic arithmeti:{7ﬁerations within the Butterfly
upit, it is believed that a specidl memory architecture, combined
wé&éﬁa single Butterfly unit, will alleviate.the proceééiné speed
’/jrimitation of a sequential processor and thus the throughput
rate.requirement (>5 M. §amp1es/sec.) of many feal—time applications can
se satisfied with a sequential processor.
. Based on the above philosophy, this work concentrates on the

development of multi-dimensional unitary transform élgorithms that are

well adapted for implemgntation by the parallel architectures of an

12

RNS-based special purpose.seqpenﬁial processor, and also result in
a simple memory aichitecture'ﬁo,allov full utilization of . the
Butterfly pnit. - B <& ‘

As & starting point, we explore the nature of one-dimensional
unitary transformé for which =& nuﬁber of fast algorithms‘have been
proposed in the literature. In particulér, ﬁe consider tﬁe memory
structures for the implementation of the RNS-based one-dimensional
_FFT and fasp Walshiﬁédamard trangform processors. We show that a

significant improvement in proqess%pg speed can be,obtalned with
the use of RNS teéhniqués. We also propose fhe ¥FT processo;'_
architectures for the implementation of one-dimensional convélution
and to compute ﬁhe DFT of multiple sequences in real-time. In the
case of 'Walsh-Hadamard transforms (WHT) we show that the propoéed
FFT processor architecture can also be used to compute thelWHT with
a significant improvement in processing speed. —

For the implementation of mutti-dimensional unitary transforﬁs,
we presepf a technique to factorize the transformation matrices of
a class’of multi—dimeﬁsional unitary transforms into products of
_?parse matrices. Such factorizations result in fast unitary transform
algorithms and yield processor stfuctures which are similar fo the
one-dimensional processor organizations. As an illustration of the
above fechnique, the architectures of the FFT and WHT processors for
real-time processing of two-dimensional signals is presented. Similar

to the one-dimensional algorithms, muiiti-dimensional FFT algorithms

compute a DFT in log M stages, where M =~rn, but employ a multi-
&y ‘

dimensional radix-r butterfly operation and achieve a considerable

saving in the number of muwltiplications over the conventional

implementations. .

i

Since the FFT algoritim is extensivel& used to perform convolutions,
we also shqw the development\of a épecial memory architecture required
Ito support the implementation of two-dimensionsal convolutions. These
convolver ofgéniza ions are shown to be suitable for the computation
of convolutions using \{umber theoretic transforms defigéd over complex

residue rings. , !

1.3 THESIS ORGANIZATION

In Chapter 2, a review of the basic structure of the one-
dimensional unitary transformatibn matrices andltheir éssociated.fast
algorithms' is provided. Special emphasis is placed on the factorization
techniques used to develop one-dimdnsional FFT and WHT algorithms as
these are used to develop fast algorithms fqr the multi-dimensional
wnitary transforms. The RNS and its basic properties aré also reviewed.

Chapter 3 éovers the development of the RNS-bésed one-dimensional
FFT and WHT processﬁrs and convolvers. An algorithm and the resulting
processor architecture for processing data from a number of independent
channels are also developed.

In Chapter 4, fast algorithms.based on the Kronecker product -
factorization of the‘multi—dimensional unitary transformation matrix
are developed. These algorithms are applied to develop RNS-based

processor architectures for the implementation of two-dimensional DFT,

*ay

#

1h

WHT and generalized Walsh;transfofmﬁ. Processor architectures for
real-time computation of the two-dimensional DFT, WHT and generalized:

Walsh transform are also presented.

‘Chapter.s covers the implementation of two-dimensional convolution

using the one- and two-dimensional FFT processors developed In Cha.bter

3 and 4, Special memory organizations for. the implementation of two-
dimensional convolutions are also proposed. On the hasiAs of co;'.t
to performance ratio, & comparison of the two convolver architectures
maiized using one- and two-dimensional FFT p‘roceésors, respe'c‘ti{ely,
is.p;'eséhted. A comparison of the convolver organizations real:;Lzed via
FFT and NTT defined over complex residue rinés is also presented.

Tn Chapter 6, an approximate number of commerically available IC
packages requiréd to implement one- and two-dimensional RNS-based
FFT processors and convolvers is given. The results obtai.ned‘via‘
similation of the proposed FFT processors and convolvers are complred
with the results obtained._ via the implementati;:nn of the standard FFT
and convolution algorithms. .

Chapter 7 summarizes the conclusions resulting from this research.

CHAPTER 2

_ONE-DIMENSTONAL UNITARY TRANSFORM ALGORITHMS

2

2.1 INTRODUCTION - i

In the past, the computation of a unitary transform of an N-point
sequenée required N2 operations and proved very time coosuming and
uneconomical. Since the development of the fast Fourier transform
algorithm by Cooley and Tukey [2] in 1965, & significant amount of
research effort has been directeq towards- finding efficient algorithms
for the implementation of unitary ﬁranéforms [l]—[iO]. The ﬁnderlying'
principle for efficient implementation of unitary transforms is the
utilization of the high degree of redundancy in t%e transform matrix
descrlptlon (transformatlon matrix). If the redundancy in a transform-
ation matrix can be ellmlnated by matrix factorization, then a more
efficient way of implementation is available. The technique of
factorization of = unitary transformation matrix into products of
Sparse matrices was first described by Good [1] in 1958 and resulted in
the development of fast Fourier [2], Hadamard [3], Walsh [4], Hear [5],
generalized Walsh [6], generalized Haar [6] and a more general class of
othogonal transform [7] algorithms.

| As indicated in the last Chapter, software implementation of the
unitary transforms on & general Purpose processor result in relatively
slow processing speed. For a large class of applications which have an

inherent large bandwidth reasl-time constraint or have a large amount of

15

/S

e cavers e ek Ammmimain s pere e o remeaaieroens b3 b sl e sty et e

d&ﬁa; speed becomes very important and péveral special purpose unitary
transform processors have been prqposéd in the literature [11]-[25].
The requirement of high processing speed necessitates the search for

available algori?hms of the development of new algorithms that are

" well adapted for a parsllel processor architecture. The problem of

designing a'SPecial purpose processor is thus analogous to the probiem

in computer architecture in which we seek a proper match between the

. implemented algorithm and the various resources of a processor. In

this work we, follow both of the above approaches; that is we search for
algorithms already proposed in the literature and we also propose

new algorithms that are well adapted for implementation by a special

- mwvnAge Processor. In this Chapter we review the basic concepis of

unitary trapsform; énd the techniques used to develop fast unitary
transforms algoritims. We also describe some of the aigoritﬁms‘an&
processor architectures, proposed in the literatu¥e, which are
suitable for implementation by a special purpose processor. In the
following chapters we propose extensions of the published algorithms
and processor architectures and also present development of new |
algorithms snd the resulting ﬁrocessor architectures for real-time

processing of two-dimensional signals.

2.2 ONE-DIMENSIONAL UNITARY TRANSFORMS

The one-dimensiocnal forward unitary transform of an N-point sequence

£(n), n=0,1,..,N-1 is defined as
N-1

p(m) = } £(n) glo,m); w=0,1,...,N-1 ' ' (2.1)

n=0

R

AT’

where p(m) is the transformed seqnence and g(n,m} is the forward
transformation kernel Simllarly, the inverse unltary
transform of the sequence p(m) is given by the relation
) : N-1 \ :
it Z p(m) h(n m.) 1=0,1,...,N-1 (2.2)
" .
where h{n,m) denotes tpe inverse transformation kermel. The transform
pair defined in equation (2.1) and (2.2) is unitary if the transformstion
kernels g(n,m) and h(n,m) satisfy the following orthonormality conditions:
1 &lo,m) . g*(3,m} = 8{n-y) (2.3a)
m=0
 hin,m) . b*{j.m) = §(n-3) _ (2.3p)
0 .]
N-1 ' :
Y gln,m) . g*(n,k) = &(m-k) | (2.3¢)
n=0 : -
N-1 ‘ - |
! blo,m) . h*(n,k) = §(m-k) | (2.34)
=0 '

where g*(x) denotes the complex conjugate of g(x) and 6(x) is the
Kronecker delta. Based on the sets of orthogonal functions such as
exponential, Walsh and Haar, a number of discrete unitary transforms,
namely, discrete Fourier transform (DFT)}, Walsh-Hadamard transform
(WHT), Haar (HT), discrete Cosine transform (DCT), generalized transforﬁ
(GT) and generalized Walsh transform (GWT), have been defined in the
literature [6], {71, [31], [32].

In the development of fast algprithms for the camputation of a

unitary transform, it is useful to express equations (2.1) and (2.2)

ag

L]

in vector notation. let p and £ be vector representations of the

sequences p(n), £(n}, n=0,1,..,N-1, i.e. | -
p = [p(0) 20, pm-)1T; £ 2 [£00),2(0),. .., 2(8-10 0T

- where [x]T denotes the transpose of [x]. Then in the vector represent-

ation equations (2.1) and (2.2) can be written as

[

o= Gf C o (2.%)

. £f=Hp . ' ' ‘ (2.5)
vhere G,and H‘%re the forward and inverse transformation matrices of
size (NxN), respectively, and the elements of G and H ave given by
¢ = g(m,n) and E_ = h(n,m). Since equations (2.4) and (2.5) define
n,m n,m : .
a transform pair H = Gml, and for a wnitary transform ¢l = [G*]T = H,
hence the trensformstion matrices G and H are unitary. For some uhitary
transforms, the transformation matrix G is real and the unitary tranéfqrmS'

-1 o 6T,

are known as orthogonal transforms. For such ﬁransforms H=C
In the vecto; representation of a unitary transform, the rows‘of)
its transformation matrix may be obtained by.sampling the set of
orthoganal functions'defining the unitary transform. Also, in terms of
the vector respresentation, the transformation matrices of a unitary

transform satisfy the folloﬁing orthonormality conditions which are

equivalent to the conditions given by (2.3):

'IN (2.6a)
IN ' ' (2.6b)

("7 . ¢ =6 . [o*)T

[H*]T .H=H. [H.*]T

'ﬁhere IN denotes the jdentity matrix of size (NxN). Examples of

19

" the transformation matrices ﬁeﬁining the DFT, WHT and HT are shown'in

Fig. 2.1, for N = 8, where W = e-Jen/N. These ‘matrices may be obtained
. - g .
by sampling the sets of complex exponential, Walsh and Haar funlctions

‘at N equidistant points. A detailed procedure for the generation of

i
transformation matrices for a large class of unitary transforms may be

found in the references §7], [31] and [32].

A direct computation of equation (2.4) or (2.5)‘requires‘N2_

. . . '
operations. As mentioned earlier, an efficient way of computing e

unitary transform may be obtained if the transformation matrix defining

the transform can be factored into a product of a set of sparse matrices.
Wer o pumber of ugitary transforms such & factorization, and the
resultiﬁg fast algorithms, has been proposed in the literature [1]-[27],
[30]-[381. since the‘diécrete Fourier and Walsh-Hadamard transfprms

are most often used in digital signal and image processing, we_will
concentrate on thé factorization of DFT and WHT transformation matrices
and the processor architectures implementing the corresponding fast
algorithms. The factorization techniques discussed here can be extended

easily to other wmitary transforms.

2.3 ONE-DIMENSIONAL DISCRETE FOURLER TRANSFORM IMPLEMENTATION
In 1965, Cooley and Tukey [2] applied the matrix factorization
technique proposed by Good [1] to compute the DFT of an N-point sequence
[}

for N = 22, which resulted in a fast algorithn to compute the DFT in

N log, N operations instead of the originally required N operations.

20

(X

-1

-1

1.1

-1 42 1 1 a4

1

1 1 -1 -

-1

1 <t -1 -1 -1

1

-1 -1

1

1 -1 <1 <1 -1

1

-1l =1

1

|2

1

6
w

N
v

2
W

1
W

0

2
W

3

L
W

\\J;/{Vﬁlx\A

(b)

-2

o

2

2

-2
ol

.
0

2 -2
0

.- (a)

(el

Fig. 2.1 8x8 TRANSFORMATION MATRICES OF (a) DFT (B) WHT (c) HT

21

Since then, ;any variations of this basic Qigorithm have been proposed;
all variations being terﬁéd.Fast Fourier transforms (FFT) algorithms

[23]. -Although'gll of the FFT algorithms available in 1i£§rature can

be implementéﬁ on a gene;al purpose proéessor as software or firmware
.routines, the throughput rate obtaineble from this tyﬁe‘of implementation
is sufficient. only for non-real-time applications. A moderate

increaée in prscessing speed has been ;btained‘by the use.of a combination
of a general ﬁﬁrpose computer and an array processor [38] whefe the

array processor performs the arithmetic operations, specified by thé

FFT glgorithm, in its high speed arithmetic unit. Due to the constraints
Fggposed by the internal architecture éf most of the commercially

available array processors, these processors are unable to perform
arithﬁ;tic operstions on multiple data items simultaneously.and-thus
cannot satisfy the throughput rate requirement of many real-time
applications. Hence, for high processing speed, we must investigaté various
special purpose processor architectures which are more suitable for parallel
processing. Since the objeetive of this work is the development of’
algorithms that are well adaptable for implementation by the parallel
machine architecture of a special purpose processor, we .will discuss some
of the algorithms, proposed‘in the literature, which are better suited
for parallel processipg.
In 1968, Pease [16] discribed 8 variation of the Cooley-Tukey FFT

algorithm in which he first pértitioned the DIT transformation matrix
- and then factored it in terms of arithmetic and permutation operators.

In a menner similar to the Cooley-Tukey algorithm, Pease's factorization

.22

LS

&

specified an 2-ptage algorithm for N = 2", 'but in Pease's factorization

each stage cons d of ; constant permuﬁafi;n of the input data
eieménts and the arithmetic operafér specified operatiogs of ‘addition
i ané subtraction on pairs of'successive data eleﬁents. Pease also
-guggested the impleméntatibn of this algorithm on a cascade/p;rallei
iterative type of processor where fhe permﬁfation operétion is perfarmed
by & hardwired shift network. Tn 1969, Pease [17] suggested ancther |
architecture wﬁére“ he emphasized thg utilitization of relatively slow
nemofiés dnd_; ﬁumber'of arithmetic units operating in parallel.
Whelchel and Guinn [11] used the matrix factorizafion techniques
sﬁégested by Pease and proposed the implementation of a radix-h cascade
brocéssor utilizing serial sﬁift.registers for high-épeed digital
Tiltering. Similar zﬁécade/pipelinearchitectures using serial memories
were also, proposed by Groginsky and Works [18]) and Gold end Bailiy [20].
These architectures used less :amounts of memory thanrequired by the
organization proposed in [11], but were more suitable'for simultaneous
processing of data from a number of input channels.

All the sbove mentioned implementations of the FTT algorithm
require a numbey of arithmetic units and generate the Fourier ccefficients
in a digit-reversed order. For applications which call for an ordered
output, a pre-shuffling or post-ordering of‘the data is required which
results in a reduced thréughput rate. Corinthios [1é]¥[15] used the
matrix factorization techniques sﬁggested by Pease [16] and proposed

a number of algoritims that are well suited for implementation by a

serial sequential processor. Also, these algorithms absorb the post-

23

A
L - -

v

' ordering operations-within the permutation operations of each stage

and the Fourier coeffic;ents are generated in the naturai_ascending
order without any loss in processing sﬁeed. A processor architecture

Implementing these algorithms and using serial memories is described

i [15].

A though the cascade)piPeline FFT processor ﬁrchitec%ures '
proposed by Pease, Groginsky and Works, and Gold snd Ballly satisfy .-
the processing speed requirement of most of the real—time signal
Processing appllcatlons the cost of these processors is proportional
to the number of arithmetic units they employ. In this work we will
show that, w1th the use of high density, . high speed and low cost commerciall&\
""ﬂ=1ab1e memory packages the throughput rate obtainable from a serial
sequential FFT processor architecture, that is well matched to the
implemented algorithm, is comparable to the throughput rate "obtainable
from a cascade/pipeline architecture. We will also show that the
architecture of a.sequential processor is. also adaptable to process two-
dimensional signals in real-time. H

Since, the FFT algorithms proposed by Corinthios [13],‘ [14] result
in a-serial sequential hardwired processors having simplified control
functions for the generation of data and twiddle factor addresses, we
choose the Ordered~input Ordered-output (0IO0) FFT algoritlm as the
basis of our further investigation. - Another advantage Sf this algorithm
is that it generates the Fourier coefficients in a properly ascending

order without pre-ordering of the input data. Since 0I00 FFT algorithm

P
L
|
1
|
1

also leads to the development of a high speed two-dimensional FFT

processor, we deseribe tbisﬁlalgor_ittma"in detail.

© 2.3.1 One-Dimensicnal (1-D) OI00 FFT Algorithm snd its
| . .

sre given by

' Implementaticn

e"“]%/M is the Mth root of unity over the field.

write kK in place of

0

0
0
0

w P o Ty

o N O

The DF‘l‘ of an M-—point seq_uence f(n) is defined over the field
of complex num'bers as’

M--l

z £(n) w’“‘

also be written in the matrix form of equation (2.4) as

where TM is the'MadVI DFT ti‘a.nsformétion matrix and the elements of

To simplify notation, we preserve only the exponent of W, that is we

Then T,, can be written as

0

3
6
9

2(M-1) 3({M-1)

24

(2.7)

This can

"(2.8)

M

(2.9)

(2.10) .

25
The nmtrix ?M can be expressed in terms of 8 permutatlon matrix
(r) -
PM and ?M as . _
= p®) ot , . A '
M'PM Tv | S (2.11)
or '
T,'= Ir&g")]‘l T (2.12)
- where Péf) is the ideal shuffle base-r permutetion operator which is
defined'by'its operation on a vectef of dimension M, where M/r =
.is an integer, by the relatioﬁ
(r) T
PM . [xo,xl,xé,.:.,xmgl]
= Ix,,x S XXX A 1T (2.13)
*o> q’xEq’ Xy q}l’xéq+1 ¥ Q+2 " 2qyd " Y1 '

, When M is a composite number, i.e. M = ;ﬁ, Corinthips [1k] has shown
that the matrix Ty' Eem_be partitioned into (r x r) s@uere:suhfmatrices,
each of dimension M/r, and factored into a product of matrices including
a matrix TM/r' TM/ iteself can then be partltloned and factored in
terms of T /r2 If this process is iterated n ,times we obtain a complete

factorization of TM The result of the ith iteration can be wrltten as

() (r) ‘
Mk = M:;k (TM/rk. ® I.) DM;k Ty ® T.) (2.1%4)

where k = ri, the symbol @ stands for the Kronecker product of

matrices [16] and

P TN PO e A s iAate - UL R C e mame b w1

Ed

.:Lp'
w

= quasi-diag \CIM_/rk.’ Il': , L2k" . ’L(r;-l)k) |

R diag (0, m, 2m, ..., -(M/rk—l)m)' ‘ C (2.15)
3 o 0 [T S
or M/r 2M/r M/r (rAAM/r
0 . 2M/r LkM/x 6M/r_ . 2(r-—1)M/_r _
A AN A B
' | 0 -_(r—l)M/z; 2(r-1)M/r 3(r-1}M/_r. e e (r—l.)aM/r_. k

and T is the identity matrix of dimension k. Using (2.14%) and réplacihg

in +wrn every matrix TM /x by its factors in terms of TM & complete

/rk
factorization of TM is obtained and can be written as

n
T, = TIl ll.lgr) slgr) _ ' :(2-17)
w= .

where u('r)‘ is a twiddle operator specifying multiplications by the

m

twiddle factors and is given by

(r) _ (r) .
woo o= (Irn-i ‘® Dri)y i=2,3,..,n : (2.18)
slflr) is an r-point transform operator giveﬁ by i
o S:E:-])_ - () Pxir) : m=2’3"“’_n . (2.19a)
with R _ S B
SR ¢ IR ¢ N ’
L s, = 5 = (‘I_'M/r ® Tr) (2.19%)

-

—_ ‘ o7
where pgr) is a permutation operator‘défined by
pgr) = (Irn-i ® P£§l) | - (2.20)
and
=Wy = I - o (2.21)
Mso ’ O
séii ='p£r) sgr)'; m=2,3,...,0 | (2.22)
where |
srdy o (® T) (2
- IM/1‘2 r @ S e , -23)
Substituting equation {2.17) into (2.8) we get .
" .
a .
= (r) _(z)
F= {mgl wo s } £ | (2.24)

or

T =‘{u§r1 siﬁ) u(r) s(rl (r) sér) N

o2 Sy V3 ol sér)} t

n

Equation (2.2h) simply states that the computation of F may be

divided into n stages where each stage performs the compuﬁation specified

by the operaﬁors uér) si?). The operators of any stage operate on the
v \ . (r) _(r} N
output of the previous stage and operators u s of the first stage

\ n

operate on the inpﬁ% vector f.

For the intermediate stages the computation specified by the operators
(r} _(r)
L S

can be written as .

S

28

3 o =l ol N s 0y 6 20 ©)

| (2.25)
(I'M/ra ® ‘.Tr ® Ir)

If we loock at the expandediform of tﬁe operator s(r)‘ we fiﬁd that

this operatoy;always ;perates on datq points which are M/r2 words

apart. An address sepﬁratién of M/r2 between the data points can be
-Ieasily obtained if the memory storing the M points is split into r'2
serial sub—memories vwhere each sub-memory stores M/r2 data wordg. Thus,
when the datae froﬁ the sub-memories ié accessed séquentially, the
difference in their address is always M/ra. A sequential memory
organization, which allows both the addressing-stfucture specifiedlby

(x) (r)

s ''" and permutation specified by Py o is shown in Fig., 2.2 for

The memory structure of ﬁig. 2.2 conéist; of two memory huffers
BUF1L a&& BUF2, each storingiM data words. Each buffer is divided into
r sub-buffers (SUB) wﬁere each SUB consists of r shift registers (SR)
with a storage capacity of M/r2 data words. The SRs in each SUB can
be connected in series to form & SUBof size M/r, and also the SUBs
within BUF1 or BUF2 may be connected in series to form a shift register
of size M. During the FFT computation, BUF1l and BUF2 are.used to
access datae for the butterfly operation and to store the ré;ﬁlts .
alternatively, i.e. when.BUFl stores the data for input to the B&%terfly
unit, BUF2 stores the output of the Butterfly wnit. The multiplexer

(MUX} is used to select between BUFL and BUF2 for dsta input to the

 BUP.2
bt —M/16 —pof

o BF1l
het— M/16—a)

SR 1

SR 2

SR 3

—— E— d— —

b

Fig. 2.2 Memory Organisation of the 1-D FFT Processor

30

Butterfly unit.

l‘To iﬁplement the operations spocified by:s(r)', we‘ogmply seloc \
a SUB and the data at top of the SRs of ‘the selected SUB forms the i& .
input to the Butterfly unit. After é%e data is accepted by the |
. Butterfly unit, each‘SB in the selected SUB io'shifted right by one
position so that the next Ei\o set becomes avallable at the output
of the SRs. A SUB within a buffer is selected on a rotating basis,

starting with SUBl, i.e. the selection of the SUBs always follows

the order SUBL - SUB2 - SUB3 - SUBh - SUBL +..... 'The number of
butterflies for which a SUB is selected depends upon the operators
s ana p(:i and hence the FFT stage. For the jth FFT stage thc

;
permutation is specified by the operator Pi—%j-2) (the indexing of the

FFT stage is opposite to the ordering of the stage operstors) and
2 X .

we perform r sequential accesses from one SUB before selecting

the next SUB. An additional base-r pérfect shuffle operation is

required to implement the operations specified by the operators

pgri s(r)‘ which can easily be achieved while storing the output of

the Butterfly unit into the buffer used for storing the output. We
cannect the SRs iﬁ each SUR of the output buffer in series and the r
output points from the Butteffly unit are shifted into the SUBS, one
.point in each SUB. At the end of a stage, tﬁe output buffer will

store the input data for the next stage.
(r)

The operations specified by u are performed within the Butterfly .

(r) _

wit. Since My (I

45 © Dri) is a diagonal operator, it simply

. . . ‘ . .'
.) . - 1 . -

-

. specifies miltiplication of the output of r-point transform with the
, twiddle factors. Wé‘can store all the required %widd;?ffagtérs in .
ROMs and the ROM addresses can be generated by evaluafing equation
(2'15)' N
From equation (2.2hj we see that the operations for the'fi£st
FFT stage are specified by the operator Sér} = s(r) (not by s(r)')
and specifies that the r-point transfogy operator be gpplied to data
points separated by M/r points. This can be achieved when the SRg
in each SUB of the buffer contéining the input vector f are connected
in seriesf_"The r points tsken from the top SR of each S5UB thén fonmsr
the input to the Butterfly unit.: &hroughout the first FFT stage, all
‘ L#~ CJBs of the input buffer supply data to the Butter{fly unit. The
output buffer configurélion remains the sanme as.&iscussed earlier,

1
twiddle factors are unity. At the end of the last stage the output

It may be noted that plT) = I, end thus for the last FFT stage the

buffer will store the vector F in s natura% sequential order.

In [15], Corinthios et al. proposed a radix-i processor architecture,
implementing tﬁe gbove 0I00 algorithm, for digital spectral analysis.
This processorlincorporated the basic organization of Fig. 2;2.38
the central part and an input and an output buffer for real-time
processing of input data and the ccmpgtatian of average power spectra.
The Butt:rfly unit of this processor used a very complex three-dimensional

muitiplier architecture with a dynamic range of 21 bits. This organization

of the FIT processor resulted in a real-time processing speed of 1.6

o~

»

. million samples/second, In the next chapter we will present an _
‘extension of the above processor architecture to obtain throughput

rates of.over 10 million samples/second. g

‘2.h ONE-DIMENSIONAL WALSH-HADAMARD TRANSFORM AND ITS IMPLEMENTATION

The development of the FFT algorithm, to compute tﬁé DFT, by
Cooley and ?ﬁkey [2] 1ed to thé‘development qf many other unitary
transforms having applications in the aress of digital signal processing,
image processing and pattern recognition. In 1968, Whelchel and Guinn
[3] introduced tﬁe Hadaﬁard transform fof signal representatio; and
classifigationg:which is based on thelHadamard matrix. Two variations
of the ﬁ;damard transform based on different orderihg of the Walsh
funcﬁ{bns have also been proposed [7]. These different transforms 'are
commonly known'as Walsh-Hadamard transforﬁé (WHT). This class of
transforms has also been extended to a much larger élass of orthogonal
transforms kmown as generalized Walsh transforms [6]. In this section
we will give a brief description of the techniques used to factorize
the Walsh~Hadamard transformation mafri; resulting in fast algorithms
for its implementation. In the next two chapters we will show that the
one- and two-dimensicnal FFT processor architecture are also suitable
to coﬁpute the WHT and generalized Walsh transforms in real-time.

Fino and Algazi [L4) end Geadsh and Corinthios [22] have deseribed
techniques to: factorize the transfprmationlmatrices of various qrdering
of the WHT. In [4] Fino shswed that the various ordering of the WHT

can be expressed as a product of perfect shuffle operators and the

33

WHT transformation ma:bri_x: in natural ordering. .- Geadah [22] used the .
factorization techniques siﬁilar to tihose used in the deielopment of
_0T00 FFT algoz.'ithm of secibi;on 2,.3.l'a.nd suggested a wired-in serial
processor architecture for its implementation whexje a'penﬁutaﬁion

. stage is performed after & stage .61? additions and éubtractions . In
.this section we deseribe briefly the factorizat%?n of the WHT
transformation matrix pz;c')posea by Geadah [22], and in the next chapter
we will show that the permutation and computational stages of the
dyadic-ordered WHT can be merged into a singlel stage which results in

a higher processing speed than that obtainable from the processor
\
architecture described in [22].

2.4.1 Dyadic—Ordered Fast WHT Algorithm and its Implementation
The algorithms for the computation of various ordering of WHT a.r.e
based on the Hadamé.rd matrix. A Hadamard matrix of order N can be

obtained by the following recursive relation: :
(By)y = (yply © B, : (2.26)

where (HN)h is a Hadamard or natural-order WHT transformation matrix

and H2 is the core matrix of -order 2 6&1 is the lowest order

Hadamard matrix: . L :
1 1
-1

K, = [1 (2.27)
By using the relation given by (2.26) recursively we can write
@ logeN ' :
(1), = [H;] (2.28)

vhere [-] ©n indicates n successive Kronecker products, .In [22] -
Geadsh has shown that the Dyasdic—ordered WHT transformation ‘matrix

(HN)d can be written in terms of _(}1N)h as

(HN) {n P, (n-1+11 ® Iei—l } (HN) C Lo (2.29)
1 R

where n = logaN. . The transformation matrix (HN)h can be further
factorized into a product of sparse matrices resulting in the

' following factorization of (HN)d [22]:

0 .
(Hy), = il__ll(Iz(nﬂfi) ® Pyi) * C ‘ ‘ ’ (2.30)

where the operastor C specifies sddition and subtractibn operations on

the input data and is given by
) C= (IN/2 o He‘) ' | (2.31)

Poi is s base-2 perfect shuffle operator of dimension (21 x 21) and L
is the identity matrix of dimension k. \ .‘

From equation (2.30) we see that the factorization of (HN)d is of the
same form as that of DFT txiansformation matrix TM of equation (2.17).
Comparing equation (2.17) and (2.30) we see that

=) _ (L, ® 1! . : | (2.31)
and -

pie) = (ILni ® Poi) (2.32)

35

TpmH = _ o | (2.33)
Thus equation (2.30) can be wriften as

)y = 15 @ - @)
For the impfementation of equation (2.34), Geadah [22] suggeéted
a sequential processor where the addition/subtraction and permutation
opgrations specified by the operators 5(2) and pie), respectively, are
performed sequential;y. Fig.- 2.3 shows a block diagram of the WHT
processor where the input buffers A and B and output buffers C and D
consist of serial;access memory, -each of size N/2. The addition/

(2)

subtraction operations specified by s are pefformed by accessing

tﬁe data from the buffers A and B in sequential ;rder and the result
of these addition/subtraction operations is shifted into the buffers C
and D serially. This process is repeated for everylpair of data points
in the buffers A énd B. After a stage of-addition/subtraction, the

contents of thé buffers C and D are fed back into the buffers A and B
(2)

as specified by the operator Py

Thus a stage consists of the
oéeratibns of addition/subtraction followed by a permutation phase. The
algorithm specified by k2.3h) is implemented by repeating the above
process n time,

Frcmwthe above discussion we note that, for each stage of the WHT

algorithm, the feedback and computational phases require (N.TIns and

N

OUTPUT

CONTROL

|

BUF (B)

ADD/SUB

BUF (C)

BUF (D)

GATING

Fig. 2.3 A SEQUENTIAL WHT PROCESSOR_

37

. S

‘Cg-a T)ns, respectively, where T is the data access time of the buffers

A, B, C and D. For example, for N=102k and T=70 ns,’the permutation

and computational phase requires 71.68 ps and 35.8% ¥s, respectively.

Thus the time required for the permutation phase is twice the time °

required for the computational phase. In the next chapter we 'will

- show that the permutation and computétional phases can be merged

_ together resulting in an increase in the througﬁput rate by a factor of

three.

2.5 RESIDUE NUMBER SYSTEM

In the past, most o?}the research work concentrated on the use of
theé binary number systeéz(fixed point and floating point) in the hard-

ware realization of signa% processing algorithms.” In most of the

digital signal processing algorithms, the multiplication oﬁeration is thé

most time coﬁsuging,and mhny forms of binary multiplier structures have
beén proposed to reduce the multiplication tiﬁg:zlk], (23], and [28].
Also.the cost of the high speed binary multipiiers tends to be very high
compared to the cost of adders and subtractors of equivalent speed.
Recently, the residue number system (RNS) has received considerajle
attention for the implementation of digital signal processing elements.
The main advanfage of the RNS, compared to the biﬁary number system,
lies in the fact that the operations of addition, subtraction and
multiplication, within a given dynamie range, can bé perfofmed using N
independent and pefallel pathsrand also the dynamic range may be changed

ﬁy varying the number of pérallel paths. With the recent advances in

L

/
/

A

g,

high density memories, the operations of addition, subtraction

38

and multiplication - may be performéd at very high speeds by the use of .

'ROMs to provide parallel, arrays of lock up tables [39].

To take adﬁantagé of thé potentially high processing speeds

offéred by the RNS, Jenkin and Leon [42] investigated RNS techniques

for the implementatlon of non-recursive filters, while Soderstrand

g

[h3] and Jullien [39] con51dered dlfferent reallzatlons of recursive

filters. A ROM orlented implementation of.the DFT and Number theoretic

transforms have bégn described by Tseng, Jullien and Miller [LO],

Huang and Taylor [41] and Bareniecka and Jullien [25].

From the gbove mehtibned works and the works of various other
inve%tigato;s in the field, the c;nclusion that emerges is that RUS
is bgcéming ;n attractive and useful tool for the impleméntation of
digital signal processors. In this work also, wé.pfopose tg use RNS
principles and techniqges to obtaiﬁ very high speed unitary transform
processor architectures. In the folldwing chapters we show that, with
the use of RNS techniques, the th&oughput ratés obtainable from the
architecture of ¢ne- and two—dimegsibnal FFT proceésérs are comparable

to that of cascade/pipeline and muliti-processor aréhiteétures.

section a brief discussion of RNS concepts is given.

2.5.1 Residue Number System Concepts

-

A number in the RNS is represented by the L-tuple

X = (xo, X s Xys oo xL-l)

with respect to the set Jf modu}i (mo,ml,...,mL_l), where X, =,X‘

I

-

In this

“(2.35)'

A
T 39
- v r K
" moduld m; is the ith residue end is formally written as x; = |X[mi.
'thp all the moduli-in the set are relatively prime, the range of
numbers, M, that can be Wniquely xepresented in the RNS is given by
the product of the moduli, i.e.
L-1 ‘ S
M= I m, : _ (2.36)
", i=0 }_ | -
_~In the RNS, the binary operations of addition and multiplication
“between two variables, X and Y, can be’perforﬁgd by iqdependent
R :
operations on their respective. residues, i.e, .
2 = |X o'¥|y implies z, = [x; o yilmi ' (2.37)

whava o denotes addition or multiplication. This property of the RNS‘
allows the impiemgntafion of addition and multiplication opefations in
L parallel paths. 1In contrast to this, .a weighted number system {equires
thé-propogation of interdigitﬂcarrys for addition and summation of
partial products~developed during the multiplication'opera%ioné. The_
computing time in a weighted number system increases witﬁ.theqincrease
in the number range, ﬁhéreas in the RNS,‘the number range can be incrgaséd
or decreased by adding or deleting a parallel path without affecting the
computing time.

Fo; the representation of signed numbers’in the RNS, a system

analogous to the 2's cbmplement binary number system is used. 1In the

M-1

number range,M, the range 0 to g—-l for M even or 0 to —— for M odd is

2
assigned to the positive numbers, and the range M/2 to M-1 for M even A

L
“MEL L
or 37§—-to M - 1 for M oad is assigned to the negative numbers.-

—

In such a representatlon'the addrtlve incerse of a number X is given

l

by'x ' M - X and xi mi - Xy for each residue., Also thls represent-

ation preserves the rules of 51gned arithmetic and the expllcmt knowledge

Jof the sign of =& number is not reqnired to perform the operatlons defin

(2.37). Since, in the RNS, 51gn determination is a dlfflcult operation,

it is essentlal to use such a number representation for signed numbers.
Genera;{division is a complicated process in RNS [hh],. Scaling is

easier than a general division but in scaling phe diviser is limited to

a predetermined constanpl For efficienf implementation of scaling,

the q§;;¥;;p scale factor must be a product of some of the moduli [39],

(RNt a pover of 2 [Lil.
For the implementopion of aritﬁmetic operations in hardware, two
basic approaches have been suggested [hh] The first approach involves
the loglcal lmplementatlon of the Boolen functions specified by the '
operation and the'seoond.apprdach.requlrgs storing of all the possible-
outcomes of the operation in lock up tables. The second.approach is
becoming more and more attractive wito the recent advances in memory
technology and reducﬁion in cost, also 1t offers the best soclution for
high'spoed realizapgons. A memory srze of (22B x B) bits is reqpired
to store the lodk up table for a moduluoaof B bits. For a:large modu%us
'tﬁis requirement tends to be very high but if the moduls is lrmited to

six bits, currently available single chip memory packages can be used

to store a look up table. For example, binary operations for moduli

. by

PR . ‘ \\

m, iélf, 32 and 16 can be impic;mented using (Wkx89, (1kx8) and

(256xk) bit commercially available ROM packages; respeétively.

Ancther advantage of the look .up_'tab.le approsch is that it
allows easy pipelining of the arithmétic oper&tions.. For example,
Fig. 2.1 shovs the implementa.‘ti_on-of a function |a.-'b|31 + |c-c1|31

31
For every latch pulse, the 6utput of each ROM is stored and becomes
part of the address for the ng;t ROM. A new input is thus presented
.and a resulf is generated for each ROM in one ROM access, time plus

: the settling time of the latch. The only control signal requiréd to
clock the pipeline is a latch pulse. The look up table implementation
can also provide a saving in hardware when soﬁe of the oéerands

are known constants. For example, the ROM structure of Fig. 2.4 can -

31'C+D3l

without additional hardware'wﬁen A, B, C and D have constant values.

also compute the function l]q-b|3l c A ¥ Ic-d[Bl . B|

In order to interface conventional binary structures, it is
necessary to convert into and oﬁt of the RNS representatidn. A binary

to residue conversion (B/R) can be easily implemented using ROM arrays

[39]. For example, in an L-moduli RNS, the ith residue of a number X.
is given by
B

x; = |

-1 3)
L v, 27 : (2.38) .

3=0 By

where bj is the Jth bit of the binary representation of X. TFor
B < 12 bits and m; < 256, equation (2.38) can be implemented with a ROM

package of Lkx8 bit. When B > 12, the sum in (2.38) can be split into

4

- k2

5 :
a 1kx8
RO
b .ROM ‘ . s
1xx8
5 [o larbl g+ lealy|
& — lka 31
] N L*] .
5 .
a : ROM ‘)
T r LA LA
. . - LATCH
#* I, + LATCH . . ‘ PULSES
Fig. 2.4 A PIPELINE ROM ARRAY N
4 *
P

43

several sections and the sum in each.section modulo mi can be computed

with a single ROM i.e., equation (2.38) can be written as

—~l

- J J
x—IZb2| Zb2| (2.39)
1 m =B/2 ¥ Uilm
_ i
The result of the 1udividual sumation terms may be comblned by summing - //(
in residue code. For m < Gh and B < 2k, » X; can be computed using 3 . r/ h‘!"
. H‘/'

Lkx8 bit ROMs. ‘ 4

The conversion from residue to bina;y (R/B) is more aifficult th;n
B/R. Two general techniques based on the Chinese Remainder Theorem and
mixed-radix ' representation [h4] are normally used for the R/B
gonversion. Using. the Chinese Remainder Theorem, & number X in the

range 0 to M-1 is given by

L-1 X,
X=1 1 m | =1 (2:40)
i=0 mi Ti'M
R M L-1
where m =, M= I m, and]__J is the multiplicative inverse
i i=0

of lﬁi]m - The hardware implementation of (2.40) results in a
i

relatively slow serial implementation [42] and requires a modulo M adder
which for larée values of M is difficult to implement. For high speed
implementation, the mixed-radix technique is normally used for the
parallel computation of X. In mixed-radix form, a number in the range

. 0 to M-1 has the representation

Ly

X= .). 8, p. : ‘ : (2.41)
=0 i~i .
1=l L -
where p, = 1, P; =)| m and the {a.} are mixed-radix digits in the
. X=0 : i . : .

ftiéﬂgg”biffhixs mi,‘- Ehe'{ai} can be generated using look up tables
- [39] and equation (2.41) can be implemented by forming the partial
products'{ai pi} using‘RﬁMs..,.Th1535cheme does.-not require a Modulo

. - v
M adder. #ince the summation can be performed with a binary adder.

2.6 SUMMARY
Thié chﬁpter has covered the basic concepts of unitary transforms
and techniques used to develop fast one-dimensional unitary’trangform,

r

algorithms. For the implementation 6f the discrete Fourier and Walsh-)
. _ ,

Hadamard trapsforms ﬁe.have shown that the transformation matriges of
these transforms can be factorized into a product of a set of sparse
matrices. Based on these factorizations high speed memory gnd
processor architectures for the implementation of these algorithms
were discussed.

A brief introduction to Residue Number System concepts was

presented snd the hardware implementation of RNS arithmetic operations

using high speed ROM arrays were also discussed.

" CHAPTER 3

+

RESIDUE-NUMBER SYSTEM BASED ONE-DIMENSIONAL

PROCESSOR ARCHITECTUREB

3.1 INTRODUCTION

In the previous Chapters we discovered that the Residﬁe-Number .

System {RNS) has 8 unique advantage over the Binary-Number System in the

limplementation of the binary operation of sddition, subtraction and

multiplication. .In the RNS, these operations canlbe performed using
N independent and parallel paths, where N is the number of moduli,
resulting in high opersting speeds. Anotheéhgdvantage of the RNS is
its adaptability to look-up table implementation a;d, a5 discussed j .the
last Chapter, the lookfﬁp table-approach.allows easy pipelininé'égf:he
arithmetic operation vhich also results in high execution speeds. Also,
due to.récent advances in high-density memory technology and regégggon
in cost, the usg—of RNS has become increasingly attractive for the
impleﬁentation of digital signal processing algorithms.

.With these considerations ve présent & novel special purpose
processor afchitecture. The chaptérlformat is as follows: we farst
present the architecture of the Butperfly unit of the FFT procesy
described in the last chapter, uéing'the RNS principles and techniques
and show that the pipeline ROM array architecture of thé RNS-baded

Butterfly unit ideally lends-itself to the memory architecture of the

L5

\/ 3 A 6

FFT processor of Fig. 2.2. Based on tﬁis RNS—baseo Butterfly uniﬁ
we.then'propose a modification of the processor architecture described

by Corinthios et al, [15] and show that the RNS-based FTT processorr&s
capable of proce531ng complex input signals at a sampling rate of over 10 MHz
in real-time as compared to the 1.6 MHz sampling rate obtainable from

the processor proposed in [15]. . 'We also propose architecturs.l

exten51ons of the b351c RNS—based FFT processor to process data from a

number of input channels and to;%erform filterlng of a real-valued input
lsignal. At the end of this chapter we present modification of the
dyadic-ordered WHT algorithm of section (2.k.1) and show that tiﬂs

algorithm can also be implemented on a FFT processor.

3.2 AN RNS-PASED BUTTERFLY UNIT'S ARCHITECTURE

For the implementation,of an RNS-based Butterfly pnit, phe
dynamic range reguirement of the FFT processor must be determined first.
A viable RNS dynamic range, M, can be obtained by choosing a set of L
relaﬁirely prime moduli. The arithmetic operations, within the dynamic
range M, can be computed by providing L independent Butterfly units, oEﬁ
for each modulus. ITn [39] it is shown that a dynemic range of 28 bits
may be obtained by implementing an RNS with 6 moduli, which is sufficieot
for most of the signal processing‘applications. By choosing the set of
moduli {mi} as 32, 31, 29, 27; 25 and 23, a high‘speed ROM oriented
ifiplementation of the Butterfly unit can be obtained.

The arithmetic operations performed by the Butterfly unit of a

radix-r FFT processor are given by the operator T_ of equation (2.16).

" For & radix-I implementation T, is given by

-

1
1 -J
1 J

Y

0 (3a)

vhere the elements of Th are the actual values and not the exponent

of W as represented in (2.16).

Using equation (2.17), T, can be factored

in terms of the radix-2 operator, T2, as

3
]

.oy

(2), 312(2) S(2)

In the matrix form, equation {3.2) can be written as-

R
1
1 -1
1
(2) (2}
Py s

1

‘l
1
-1
iy
L)

(3.2)

(3-3)

1 (3.4)

48

ﬁhicﬁ shows that &h cah,be implemenfed usiné i complex adders and
4 camplex subtractors, because the mult%plication of] just changes
the real part of a number to imaginary part ;nd vice versa.

Since the RNS is &n integer number system, all non4intége£
coefficients.in the FFT must be converted to integer valuesf
This can beldone by ﬁremulfiplying the non4inte§er twiddle factors
wvith & predetermined integer conwversion factor, P. A'
simplified block diagram of an RNS-based Butterfly unit, f;r the
modulus m; implementing,operaﬁions specified by ih and the multiplications
by the twiddle factors is showm iﬁ Fig. 3.1 where'{xi} and'{yi} aré
the residues of the fouf inputs and outputs,.respéctivelj, P is the
integer conversion factor and [.-]R denotes the rounding operation.

To menerate]yilm , the multiplier for the multiplication of Ile
‘ 1 _ i
is not required. Since P is & constant, it can be premultiplied

with lvl and we generate Iyllm{ instead of lvilm_. - A ROM

I
i i ‘
implementation of the radix-l Butterfly unit is shown in Fig. 3.2. For
* F e ‘ : WY 1 1
simplicity ye have shown a varisable lailm. as &, . Wl s Wé _and W3

and l[WSt . PJle

: i
represent the values of][Wt . P]le" |[W2t . P]Rlm
i i

9
respectively. From Fig. 3.2 it is clear that arithmetie operétions
within the Butterfly unit can be performed in a pipeline by using the .
structure of Fig.2.h, If the stmucture of Fig. 3.2 is divi&edinto a
L-stage pipéline, an increase in throughput rate by a factor of four may
be obtained. Pipelining of this strucﬁﬁre becomes even more attractiveby

the availability of a family of registered PROMs (Monqlithic Memories series

63RAxxx) [49] thereby avoiding the need to provide extra storage for the

| v, | 2|
i'm
i m
B >@— >
L k-pomNT lv'2|mi SN
. . _ i
x|, — >Q— >
] v, | [Pl
- smi Rim
—_— >® >
|3C3Im:,L _ TRANSFORM IV | [v3t-P]
h m. ’lei
1%, | 'ﬁl > >
L my

Fig. 3.1 A SIMPLIFIED BLOCK DTAGRAM OF A
RNS~-RASED BUTTERFLY UNIT FOR THE
MODULUS m, .

'-l'

FA
lmi

PAM
ty, !
31:11i

Ly, |
hmi

)

Re (x,) — () T >l REG. —BE—-—ED Re(y,)

o ~ Im(x;) o, & 'REG. -—e@—-—)'m(yl)
- _ | vv Re(w'a) , S .
\ | N T sy
A + '. Re(b"3‘)7‘

Re(x,) | 'v G . O AvQ
. ' | Im(:«r‘e) | .
. : | B(x] _
. "‘ o\, ‘o > In(y,)
Im(x,) } (%) - -

Re (y,)

Re(%al-

. Im(yé)
len(x3)

° Re(yh)
Re(xh) +

+

. W '
IR
Im(x,,) S O 9 © S

Fig. 3.2 A ROM IMPLEMENTATION CF THE RADIX-4 BUTTERFLY
UNIT FOR THE MODULUS m, .

() INDICATES A ROM PERFORMING THE OPERATION *

a% INDICATES ¢ = |a-b|
= i
- |

L3

-

pipeliue operations,

. In the RNS scaling is important, since we are not interested in
ccmputation over the finite ring of integers, ;M; rather, we wish

to obtain an approximation to the eaiculations performed over theh“

* J)
infinite field of real or complex*numbers. This may be achieved by °

scaling ‘down the Butput of the Buttei?iy unit by a constant scale

factor. In [4O] Tseng et al. have developed a design procedure to

implement a number of scallng schemes by mlnlmlzing the error in the

output of the FFT algorithm . To minimize the hardwa;e requirement

and to simplify the processor control functions, we choose the

scaling scheme that Seales down the output of the Butterfly unit at

aa~h ctage by a preédetermined scale-factor. The selection of the

scale factor depends upon the desired error in the FFT output, the

dynamic rahge, M, and the integer conversion factor, P. The scale

factor can be determined by the procedure outlined in [LO].

Various schemes to scale down a number by a constant scale. factor

have been proposed [39], [L1]. ﬁtenlthe scale factor is a product of

some of the moduli, Jullien {39] has described a scaling algorithm

using ROM arrays. In [L41l], Huang and Taylor proposed a combination of

ROM and adder structures for scaling when the saale factor is a pover

of 2 and relatively prime to the set of modﬁli'{mi}. Although the scheme

described in [41] seems to offer greater flexibility in choosing a
scale factor, it trades processing ﬁpeed with flexibility and, in general

!
has slower processing speed than the sScaling scheme described in [39].

™

>

Since the scaling scheme described in [39] is edsy to pipeline and,
. ' '
as shown ldter, results in a considerable .saving in buffer memory, -
we choose this scaling schemé to scale down the output of the Butterfly

-

wmit. .
i :)

Fig. 3.3 shows the flow-graph of the Orlgmal scaling algorlthm

for a 6 modul:. RNS w:Lth 3 -scaling modmli éN-—6 s=3}, where o indicates

a ROM stor:.ng the result of the arlthmet:.c operatlons specified by

the sce.ling a.lgorlthm From Fig. 3.3 it is clear that the computation

specified by the sca.llng algorlt’\ may be performed in a N—stage pipeline

and when combined m.th the plpeln.r?e of Fig. 3.2, an (N-!-h)-stage pipeline

ha.ving a throughput rate cﬁ/hefmverse of one ROM aecess time is

obtained. Also note that the scaling algorithm first computes the (N-s)

residues of the scaled output y for me: S < i <N-1 land-thep, _using

these residues, the other s residues for m, : 0<i<s-1 a.rer'cbmputed

" using the. base-extension techniques [3__9]. Since the base;exte sion

part of the scaling algorithm requires c;nly the residues of ¥y for

mi: s £1i < N-1, the base extension part may be 'separated from the rest

.

of the pipeline. This éef:aration leads to =& signfﬁcant savings in

memory since we do not have ta _stére the residues of y for mi: 0<i<sl

-and these residues may be generated when needed.

(r)

The operator u;" " of equation (2.18) specifies multiplication of the

output of the r-po:mt*‘transfc_)rm operations by the twiddle factors. These
twiddle factors mayrbe pre-computed and stored in ROMs, For example,

for a radix-h ,implementation_,,}}a ROMs storing 'the twiddle factors

=

_/

T, A1.0)
4(2:0)
o . T3 T, (3,0) T,(3,1) T,(3,2)
3773 Q) 7 T,
o E?TZ(MO) § LD | Yo | Y6,
] - 7, T5(4,4)
) Tzcs,sﬁTz(s"” | E& T,(5,1) T,(5,2) T,(5,0)
57 %5 :
| - st 1,8,5)

Fig.3.3~ Original Scaling Algorithm for N = 6 and S = 3
& .

N ', W and Wé' of Fig. 3 2 may be used, Each ROM stores the twiddle

~factors in ;he sequence shown in Fig. 3.h, starting from address g,

To access the twiddle factors from the ROMs, we set up a counter i
‘ . ' %
where i=0,1,2,..., H——l whlch‘is cleared to zero at the beglnning of

every stage. If.i is incremented by one after every butterfly operation
then correct twiddle factors for the lst FFT stage are obtained by
addressing the 3 ROMs with i. The twiddle factors for the other FFT -
stages mcy be'cbtained‘by a masking operation. For the mth stage ' we

set 2(m-1) least significant bits of i to zero and then address the

ROMs to access the twiddle factors. Thus the tyiddle factors' sddresses

fcr a1l the FFT stages may be generated by a vefy simple control function.

3. 3 A ONE-DIMENSIONAL RNS—BASED FFT PROCESSOR ARCHITECTURE

In the last section we saw that the'hddltlon, subtraction,

L)
multiplicatﬁon and scaling opereﬁions specified by a radix-b FFT C
[.
butterfly can be performed in an (N+k)-stage pipeline with a throughput
rate of the inverse of one ROM access time where N is. the number of‘gpduli'

iu_the RNS. In.genefai it can be shown that by the use of the RNS a general
radix-r FFT butterfly can alsokﬁécimplemen%ed‘in a pipeline structure.

Since in-the basic architecture ofﬁthe FFT processor of Fig. 2.2., the
butterfly cperations in a etage are performed sequentially by accessing

the r data points from‘one buffer and storing the r outputs of the previous
butterfly icto the other bﬁffer, simulteneousl&; the ROM-array pipeline
architecture of the Butterfly unit fits directly into the memory

architecture of the FFT processor. Thus during every clock cycle the r

HOSSHO0Hd 4 {-XIQvd V 404

EHOIOVA TIQUIMAL FHI DNINOLS SHOY

Ty o : . T
- wiyg . w, .
Fla - 8yt IO N] |Pld-o. 1 #1]
. {1~)¢ ‘ (t-)@ T m
T : i T T
q [ur .
EDES] REQY REDES]
._”E q : . ._”E q . . .mE "
e gl [#ras a1l RES]
Ty Y,y L
Ila-gal] I"[d-_~]] Caead|
. T . T T ,
E_m_‘.nm.o.ﬂu__ S.._m_”nH.Ou.L— E_m_”m.ohwu__ + _O_A.m.mm.H.mvﬁaq
$jou . %oa Tion
€ .N# .Hﬁ. | + 8J0398F ITPPTAL

‘"56

dnts points can be shifted into and out of the Butterfly unib's
pipeline. Although the pipeline will cause a délay between an input
and its cépresponding output, an effective tﬁroughput rate of the
inverse of one ROM access timeé is obtained. When the data from the
:memory buffers is accessed at the throughput rate of the Butterfly
unit ‘.s pifeline, the result of a butterfly operation i.s ob‘t;a.ined in.
every pipeline clock cycle.“ ' 1 .

.Therbésic memory architecture of Fig..2.2 is suitable only for
the case of non real-time inputs. For real-time input and output
operations Corinthios et al.\[15] suggested the use of two extra
bﬁffers for real-time input and‘output operations. In this thesis we
show that a three buffef grchitecture is capable of performing the
DFT and convolution operations-in real-time since the input and output
of the 0I00 FFT algoritlm are in the natural ascending order. 1In the
next section we will show that the réquirement of four buffers arises
only when the input data from a number of input channels must be
processed.

A three bﬁffer memofy architecture of a RNS-based FFT processor
is shown in Fig. 3.5. 1In this organization, two of the three buffers
store the input and output of the intermediate FFT stages, the third
buffer is used to collect the sampled input gpd output the previously
computed Fourier coefficients simulatneousf;l

In the beginning of a fransform, if BUFl1 storesAthe output of the

previous transform, then BUF1l is connected to form a long shift register

of size M as shown in Fig. 3.5b. The distributor routes the vector f-

.« X

»

“ 57

— BUF 1 3
4 ;
]. o .

B) | _. : . ‘ i) INPUT RADIX-4 ‘
SAMPLED " - | . ‘ ” BUTTERFLY
INPUT £ ‘— — {° BUF 2 . OMUX T ap

.o DISTRIB- R . AN
:—‘D' U'rdx —> ' 17+ - .SCALING
1 ARRAY
14; '
- _i)
BOF 3 || nl OUTPUT
| ——D F
: OUTPUT
Fig. 3.5é\- Organigsation of a RNS-baged 1-D FFT Processor . . ¢
SUB &4 - SUB 3 "~ 'SUB 2z SUB 1 :
——— — T T /= T TOUTR!
I_-r; SR 1 __H; SR 1 _| SR 1 ——”-; SR 1 ‘--—T.':-F
I i l
> k2 ||l sR2 SR 2 mll SR2 [
I 1[1 |
=1 R 3 "'||'L"" SR 3 SR 3 .—llf':’ SR 3 ;
It li
Inputi lih Il{) _Jl
. —_— | - 4
£ B SR.:. !L__.SRA_ ASR: JL SR I

Fig.3.5b'- Interconnections of SUBs of BUFl to form Shift—RegistgF of size N
. N ‘

!

/

to the input Tof BUF1 and the eutput MU# gates vector F to the
output. Thus, during the-compﬁtation‘ of a transform, the new
data for the next transform is shifted in and the result of the
previeus'transform is shifted out simultaneoﬁsly. At the star% of

a new transform the buffer selection is changed and the input, output
and transform operatlons are repeated for the next set of 1nput

data. Fig. 3.6 shows the buffer allocatlon for real-time processing

L]
of a continucus input.

3.3.1 System Organization of a RNS%Based FFT Processor

In the previous sections ve discussed the organieation of varieus
memory units,limplementation of the RNS-based Butterfly unit and the
generatioh ef twiddle factors. TFig. 3.7 shows the interconnection
of the varioue hardware units of the FFT prqdessor.fof a 6 moduli
RNS with 3 scaling moduli. The processor is capable of computing
the DfT_of a continuous input in elocké where a block contains
M-points. |]

At the start of a neW'block of data, the input from the A/D
is converfed iqto residue code end the residues are stored into
the selected memory buffers provided for each residue. When the.
input vector f has been accumulated, the selected memory buffers
contain the residues of M samples ready for proqessing. At the ®
beginning of a nevw transform, the buffer allocation ie changed as

<shown in Fig. 3.6, so that the residues for the next transform can

) /
' be_storqg in the other unused buffer.)

The buffers, storing the residues of the input vector f, are

selected and the input MUX gates the resjidue (r3, T}, rs) corresponding

59

T
, . ppo " {(4) ugA .amv a1e jJd 9yl uf sabeis jo
Jaqumu 3Yyj u3yMm wIojsueir] e jo uojzejzndwod SwWI3-Te9I JI0J UOCFINI[SS Iajjng 9'¢ ‘D14

. ‘ Y |
14nd ‘1dng - €dnd ~ gang : R
INdINO/LOdNI = - lIdd 10dLNo/LNdNI - (g)
= N . ezang zdng - 1dnd Tang :
S Lnd1no/InanNI aa - Indino/IndN! -
g€dng €dnd - zdng zang
. ‘ . . -,
INdiNo/LNanNl 44d INd1N0/LAdNT .
. | - tdng 1dng - €dng €ang
. | “Indino/IndNi ida indino/indnl
zdnd zdnd - 14ngd 1ang
. LNALOO/LNdNT " L4a 10dLN0/INANI
€ang zdng - €4nd . €dng (e)
INdLNO/LNdNI . 1dd = IndLNo/&NdNi
o | 14nd zdnd - Tdnd . 1dnd
 IndINO/INANI 13 &0dIN0/LNENI . .
_ €dng zdndg - gdng gdng .
. ~ 1ndINO/INANI 1ad % LNdLNO/INANI
- b | 1dng . . zdnE - T4N8 1dng
* & - f -

. : . . L LNdaN0/INdNI L3d LNdino/IndN

'

._ﬂ."

60

wvmmmuomm Ldd {—-XIavd d-T QASVI-SNM V 40 NOILVZINVOHO WHLSAS L€ 314

"v/a
D ay —> oL

£ANAISEY (S-N)

SANAISAY (S-N) | ., .
| | ¢ ana K51

SROY)
HOLOVd , XNH

FTATIMT,
- g INdIno

‘ . : .. HoLNd
’ K Kl— y/apje— "

2 Jdnd _
- . THISIA | ¢y

vi

\/

AYWAYAY

' SELINN

SAVHUV gy XM

[
SAVHRY | .oy | KLIALINE { <y
I texiave KE——

DNTTVOS

NOISNALXA
-agvd
8

s

1 404

61

N -~
\ . . g

to the four input points of the next butterfly bpgration to the
ﬁase-éxtension array, which generates the other residues (ro, Ty» ra).
.The-Buttgrfly units perform a h-poiﬁt transform and multiplication
by the twidﬁie factors, ;n each re;idue of the four input points. The
- output of the-Butterfiy units is scaled down by the scaling arrays
lwhich generate the residues (r3, Ty, rsl of the four oﬁtputs. These
outputs are sﬁored into the intermeﬁiate result buffer fo£ processing
in the next stage. This process‘is:repeated. for‘other data peints too. -
'At the beginning of a new FFT stage tﬁe.role of the input and
intefmediate result buffers.is inteféhﬁnged ﬁgd‘the above process is
repeated for each stage. At thg,end.of the required number of stages,
the residues correspdnding to the. output Fpurier coefficients become '
Iavailable from the selected output buffers. At the beginning of the
next transform, the buffer selection is altered in such a way (see
Fig. 3.6) that thé buffers storing the residues of the Fourier coéfficients
of the previous transform are connected to the R/B. Thus during the -
processing of a tranéform, the F;urier cbefficientg of the préviops
transform afe generated by the D/A. A time delay, equal to the time
required to compute an M-point transform, is.geﬁerated between an
input data block and its Fourier coefficients but that is of little
importance f;r most ap?lications.

Since the butterfly operations, ﬁase-extension and scaling are
being‘performed in a pipeline with a throughput rate of 1/T where T

is the ROM access time, and also the data from the memory buffers is

accessed at the same réte, the time for computing the DFT of a M-point

- complex sequence is given by

P=

H|Z

. T -.1ogrﬂ; ‘ _ | ‘ t3;5)

For example, with T = T0 né,.d\radix—h FFT processor will take about

“90 us to compute the DFT of & 102h—point“comp1ex sequence. This gives)

a sampling rate of about i1 M—sampleé/sec. When the input data is reﬁl—
valued, it is possible to procéss two data séquences simultaneously and

| hence the throughput rate of the FFT'pfocessor.@ay be doubled for
real-valued input sequences. .

We may note that due %o the piﬁeline‘architecture of thé RﬁS—based
Butterfly'unit, a-102h—poiél‘radix4h sequént?gl processor will ﬁerform |
-real-time ﬁrocessing of signals sempled at a rate of over li ﬁ-samples/
sec as compared to & sampling rate of 1.6 M.samples/sec obtainable
f?om the same_by‘usipg a‘Binary-number system [15]. This throughput‘raﬁé
is also comparable to that obtainable from caécadé/pipeline‘organizations

[24], discussed in the literature, which involve a greater degree of

parallelism than required in the architecture propdsed here.

EY

3.h PROCESSOR ORGANTIZATION TO OBTAIN THE DFT OF SMALLER SEQUENCES

In many applications of a special purpose FFT processor, such as
radar and sonar, it is required to procesé deta from a number of
independent channels [18]. The memory architecture of the FFT Processor
discussed earlier, which is designed to process data in blocks of
M-points, can be modified to process data from r channels in blocks
o% M/r-points.

63

let i‘l,fa,. «oof amd Fl, Fyse..»F be the date and their DFT vectors, =

respectively, each of length M/r points. Let f and F be the vectors

of 1ength-M defined by

. . . T N - . "
T = [fl,:a,f3,. T . (3.6a)
and '

= IR Ry Ry B D (36w

where [x] denotes the transponse of Ix] In this representation,

the DFT of the vector T can be wrltten as

- - a -
F, T, £,
Fa Bt £ |
3] = Ty 530 | (3.7
F L RIS |

L R . ¢

where N=M/r and Ty is the NxN DFT transformation matrix. Equation

(3.7} can also be written in Kronecker product form as
= (1, ® I, ¢ : (3.8)
Using the transformation [14]

(r)- cplr)y-1 _ :
PMr (Ty/r @ Ir). {P;} =I. ® Ty, (3.9)

we can write (3.8) as

<), (r)

Py lF - 1_°_M (TM/r ®
or -

(r), - :

PMI‘ FT (1'r ® T}d/r)

Defining F' = p{T)p ana ¢

M)
F = (Ir ® TM/r)f'
Since M = rz, M/r'= r(g'_l).

of TM/r' can be written as

T

2-1 B

m=1l

SOV VO S 5 W
Ir) {PM)} {PM 3

P(r)

M £

= P!%r)f_ wve get

Using equation (2.17), the factorization .

Substituting (3.12) into (3.11) we get

_ [
Fr={1_ @ (I
T =1

p(r)

m

slgr)) £

L +

Using the following relationship between matrix and Kronecker

products [16]:

(aB) @ (cp) = (A x

We can rewrite equation (3.

L 2-1 ('r)
Ft = {1 (Ir @ wu
o=l

c)(B @ D).
13) as

< {r)yyae
)(Ir @ s) 1!

© 6h

- (3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

From equations (2.18) to (2.23) we see that

(r) ' | 3 '
I, ® net = (1 @ Dyl - By - o (3.16)

I ® S§r)=Ir ® (Pj{r) s(r).)

= (T84 dp PS'))(Ir'Q Iy ® T, ®"-Ir)
o1 aa o P, o1 & 1) O Gan
r ri /r* r ¥ r . . -

Since N=M/r we can write - - | .

o

Ir. ° Si(r') = (Irz-l ® Pg)_)(IM/rE @llTr ® Ir) . . (3.‘18)
- p{¥) , ‘ ‘--‘
1 . :

e

Substituting equstions (3.16) and (3.18) intc"(3.15) we get

-1

o= T s;r? Rn(lr)}f' _ ' (3.19)
=l ' '
From equation (2.17) we can also write the factorization of TM as ‘ <
PN IR : (3.20)
M Yn m) . .
m=1

Comparing .this factorization of Ty with the factorization of

(Ir ® T,.) of equation (3.19) we see

‘ Sgl = R‘;’r); . m=g-,2,| LI] ,g'-e
-‘\; N um = Bm ; Fl,a,. . w ’R,.l

. the -:elations
R ¢ IS ¢) RS
= PM F; £ = PM f”r"

L

66

Thus we note that if the vectdrs f and F are permuted'a.s defined by

we can genei:ate—the DFT of r M/i'-point .seguences with an M-point

FFT processor by’ processing only the last {2-1) stages.

’Er])- and sér)‘ can- be made equal by using the relation

{Pﬁr)} (IWr ® T,)P(’) (i © T, © I.)
Slnce R(r) =1 \ ® T
2.1, “M/r | T
_Plfﬂr) ' (r)} (IM/r ® T,)P(r) {P(r) -
ﬂUéing (3.23) we get ‘
(13= Ifi") (T2 ® T, @ I). {P(r)}
, =. (r) ()| {P(r)}_l - '
Subétituting (3.24) into (3.19) ve see that -
s(r) é'R’(r)", IKFl,Q,..'.,!;-l
m m
N "

The 'operators

(3.21)

(3.23)

(3.24)

 (3.25)

oﬁtput buffers. Thus a three-buffer FFT pfocessof‘or

r sequences of M/r points each, or I’E sequences of ‘M/r? ‘point

. o . . 67.
Voo o

andrtﬁE, {Pér)}_l cancels with the Rﬁrl of £', Thus we-.can write

equation (3.19) as. '

-1 - . o
SAUENEE u(r)(r)} £ o : (3.26)
=1 ‘ C
!

which can be 1mp1emented on an an01nt FFT processor by executing the
/r.'

M—point FFT algorlthm starting from the 2nd stage.
From equation (3. 26) we see that f. and F' specify a different
-permuation of input data and the output coefficients for the r channels

resulting in a different organization of the processor! 5"

ut and (
ization is not

suitable for'processing r M/r-point sequences. One posgsible structure for’

the implementation of (3.26) is to use separate buffers for input
. . ' 4 .

\

and output operations. A processor architecture capable Qf processing

e
or one M-point sequence is shown 'in Fig. 3.8 for r=L.- A . ;
- M X . . .
At any stage of the FFT procéssor, elther BUFl or BUF2 acts as
the input buffer and receives daté from the A/D through the input -

A

switch and either BUF3 or BUF4 acts as the output, buffer and sends

data to the D/A thfbugh the output multiplexer; the other two_buffefs

8 .) : ‘
are used to store the intermedaite result. The configuration of the

* buffers, to store the intermediate results and the output Fourier
.A "

.t :
‘coefficients, is the same gs discussed in the previous sections, but -

the input buffer orgapizatiop is slightly_modified to accommodate

multiple sequences of smaller size and is shown in Fig. 3.9. To

~

—

——

NDE N—~WFQ TN AD LR

£ 14—t 4 it 4 LD I N A 2 N g
Huorwn—o
. P . [
S, .
[w]

—
(=)

——

[l ol

OWNF L M= S~ UHw Rk

Pyt et et et

g

PLE

HOLD

SAM-

FROM

BUF 1

INPUT

BUF 2-

. [BUTTER~

FLY AND.
SGALING

‘SWITCH

.BU}:-‘ E .

‘:f-;*\ D[A

Af,

BUF 4

i ARRAY"

[TWIDDLE

[FACTOR
ROM=

Fig, 3.8 - FFT Processor Configuration for Processing Smaller Séquénce

4l

A/D

ENABLE

SEQUENCES
ENABLE

;H 7

1024-POINT

SEQUENCE

.

. - 69

[l \

process &n M#p01nt sequence the SUBs of the input buffer are connected
%o form the long shift register of 1J§gth.m,‘but for r M/r-point
sequéﬁces, the A/D samples the £3§npﬁf/;hannels and the sampleé,data
is stored into the SUBs in a cyclie Brder\such that-SUBl, SUR2,...,
SUBr store the data corresponding to iﬁéut channels 1,2,...,r,
réspectively. For r2 M/rz—point sequences, .the sub-buffers still.
receive the data in a cyelic order, b;t now from all the- r2 channéls.
~The' permutation of the input signals at the input of the A/D

aliows the output Fourier coefficients of the ralsequences, to be in

4

.a natural cyclic order. Also in case of r2 sequences the FFT processor

\

starts processing frombjﬁ'“Frd stage 1nstead of the 1st stage It
may be noted that the .B/A performs the demultlplexlng operatlonép'

required to generate'F from F', and the Fourier coefficients will appear

-

at the outpﬁt for each channel in their netural ascending order.

~

3.5 PROCESSOR ORGANTZATION TO COMPUTE 1-D CONVOLUTIONS OF

REAL—VALUED SEQUENCES

The FFT technique has been widely used to perform high speed
filtering Ypexrations. Since the FPFT algorlthms offers many forms of .,
parallelis:E;;\Tts 1mp1ementatlon, it is often preferred over the
directhimplémentation of'digital filters.

The circular convolution of two periodic séquences T and h of

v

"period N is given by

. N-1
gm) =} £(a) n(jmaly) , (3.27)
n:o .

L

where m=0,1,...,N-1 and |m-n lﬁ' denotes gmodilo N operation.. If
the DFT of the sequences g, f and.h.is denoted G, F and E, then

the DFTs are related by the relationship

G(m) = F(m) . E(m}; ==0,1,2,...,N-1 , (3.28) .

' ghich is a point by point'mul'biplication of the DFTs F and H, The
sequence, g, may be computed by taking the invefse DFT of G. In

Ziig':;tal filtering epplication, f and g are the input and the desired output’
.seqpences, respectively, and h is the impulse response of a fiﬂi£e

impulse response filter. -Since the filter impulse response, h, is

gén rally fixed, a filtering operation réquires & DFT, an invé;ée DFT and

-

N complex multiplications.

’ ‘
In many situations we are interested in computing the ﬁperiodic'
convqlufion ogifinite durat{on sequances.rather than circular convolution. ‘
The above procedure‘of computing c¢ircular coﬁvolution can be appli;d]
to compute aperiodic conqplution if the finite duration sequences
are interpreted as periodic sequences of length (M+L-1), rwhere M and
L are the lengths of the f and h, respectively. In situations
where M. is considerasbly la}ger than L, Stockham has desc;ibed a
procedure tb convolve the sequences f and h by sectionieg the longer
) sequence f intd sections and computing the partial results which c;n
be combined together to form the desired output sequence {4s5].
?here are two techniques to perform a convolution by the metﬁnd of

sectioned convolutions, namely, Overlap-add and rlap-save. Both

the methods split the sequence f into a 1arge-n ber of sections and

-

compute the convolution of each.section with the sequence h separately. '

In the gye&{sf:fff_ffthod we add the results of . two consecutive h .

sections to generate the de51red result but the Overlapnsave method
involves overlapplng of the 1nput sectlons and dlscardlng some of

the samples of the result of each.sectlon. In terms of hardware
.rqquirément the overlap-add method requires extra hardware for the
oddition of the resulto and seems to have no advantage over tho
overlaﬁ—save méthod Thus we choose the overlap-save method and
present the 1mplementatlon of the convolutlon of real-valued sequénces
"on the FFT processor architecture of Fig. 3.7.

For the implementation of tho overlap-save method of sectioned
convolution for real-valued input sequences; let the FFT processor
be organized to perform the DFT of the N-point sequenoos and let the
length of the impulse response, L, be (N/2 + 1) Fig. 3.10 shows Ia
scheme to generate the complex input to the FFT processor for
processing a real-valued input sequence. A shift-register (SRl) of
length:N/Q is required to generate a delay of N/2 samples between the
real-part and the imaginary part. Initislly we élear SRl and at the
start of the filtering operation the real-part is generated by the
cutput of SRl and the imag}nary—pgrt ig taken directly from the
input sequence. The input sequence is also shifted into‘SRl
simultaneously.” In this way the real-input sequence is divided into
sections of length N/2 and a combination of different sectiono form

the input to the FFT processor. For eihmple, a combination of

sections O-1, and 1-2 forms one- input, 2-3 and 3-4 forms another input.

WYHOVIA HONIWIL (4)

© 408SED0dd IJd OL JLdNL YTIAHOD 40 NOILVYENdD (®) 0T'€ 31l - . \

: et Tt OT 6 9§ _ L 9 & 4w € 2 _ T : A
_—— . . . — Tuvd .oﬁﬁ; 40SSI0Ud

. . Tdd
1 ot 6 9 L. -9 ¢ - 3 e 1 0 0L
cem = e . . - . . . ————e—— Jdvd VI INANT
ot 6 8 _ L .9 S K 3 2z T 0 AONINVAS
T * * R LNdNI TV

SN Z/N e/N /N gN e/n YN N TN E/N .

(%)

\\ B
: u O
pva - . e/N mﬁm o1 J |
: JI8%98 =))
Tyad pOTISd ALHS -
yossEO0Ud . Tyg .
: Ol J S _ | FONANDAS
1ndil Iuvd
: XFATANOD - —g— BdNI
c "OVAI ‘ TYad

The pfécessor is_organized to perférm both the DFT and tﬁe
inverse DFT (IDFT) of N points and the miltiplidation by the filter
coefficients, préastored in ROMs, is done in the last DFT stége.
Fig._3;1i shows the assignient of the processor buffers for inpﬁt/
output , DFI“and TDFT opérations. To generate the filtered output,

& delay of N/2 samples between the real and the imaginary parts
‘.of the complex ou$put-is required since the lst half of éach output
corresponds to the overlapped sectiong of the input sequence and mnsf
be discgrded.‘ This is obtained as shown in Fig. 3.12a. As shown
- in Fig. 3.12b the first half of the complex output of an N-point
" transform, is discarded. Dufing the period the 2nd half of the
complex output is outputted by the processor the real-part of the
complex output is gated to the output bus and the imaginary part is
shifted into SR,. The date in SR, is gated to the output.bus
during the 1st half of the negt filtering operatidn.

Fér a processof cycie time of T ns & convolution of a N-point
- ‘real-valued input sequence with a filter impulse-reéponée size of
(N/2 + 1) will take 2 x T x N/r x long ns. For example, a 102L-
point radix-li FFT processor vith 1 = 70 ns would take 179.2 ps and a
sampllng rate of more than 5 MHz is obtainable which is comparable
to the pipelined floatlng—p01nt convolver reported in [eh] The
throughput rate may be doubled by using separate radlx—h processors
for DFT and IDFT operationé;

Note that we may double the processing speed at the expense of

an additional inverse FFT processor which amounts to doubling the

b
o

73.

T4

WYHDVIO DNIWIL (Q)

- INdIN0 HOSSIOOHd Ldd
xmam:oomaa zomm muzmacmmm_:&moimmmozoﬁammﬁuhima m.wE

cgs « ()
- _ qamg_"Buug .
. g ndang. : . .
eng ndsmp « S Mmaw wam. © 24«
R _qaBd ‘FBul
. N T . _
g nd c sTd n
snd a0« WS qaug Teoy g«

&

L ed "FBul,
sng qndang + 2yg sng qnding +

o~ 1x8d T®9Y
n# dIno £y nding e# ndang T4 ndano
7 (®)
2/N uiduey Jo .
3:38 PaIaITLI) nmpﬂwﬂm 13 TUS weq B .SmmmuMM
S sng ndang 4s : > woa
qudqn
1184~ TE2YH xaT1dwc
NOZINTOANOD GENOIIOZS ¥0d HOLIVOOTIV ¥3LING HOSSIIONd Ldd TU°E *I1d
2and zdmd
_ T4 -tand ~Tdand Tang
*Indgng/qndur | daal . . dda 3ndano/ndul
P ' . -
. zand zind -
| £ang -€and ~€4nd cand
andgng/andur - L4dI- Lia . nding/anduy
‘ 24nd zand
Tand -Tdnd -TdndE Tdnd

h 4
»

-gndqng/ndug L4AT Tag : ndano/gndul .

s

hardwere requirement and hence the cost. In many situations the through-

-

put rate of 5 M;samples/sec is sufficient to satisfy the specified processing

speed requirement, and thus the requirement of asnother IDFT processor

does not- arise. In the case of other processor architectures proposed in
. N ‘ ! . . \

_the"literature [11], [16], [20], [24] we must either use an IDFT processor,

or pre-— OT post-order the data to use a single FFT processor. Since

the pre~ or post—ordering of data would require extra hardware and

~time, the cost to performance ratio ‘of these processors would be greater‘?K

than that of the RNS-based FFT procéssor proposed here.

3.6 'A ONE-DIMENSIONAL WALSH-HADAMARD TRANSFORM PROCESSOR ARCHITECTURE

;p section 2.4 we discussed the factorization of tﬁe dyadic-ordeféd
WHT fransformation maérix and the processor architecture proposed by
Geadsh et al, [22] in which the WHT is performed in n stages where each
stage consists of a computation;l phase foliowed by a permutatipq)phase.
In this section we show that.the permﬁation and computational phases
;f a stage of the WHT algorithm can be merged together resulting in an
increase in the throughput rate by a factor of three. |

In section 2.4 we showed that the factorization of the dyadic-
ordered WHT tfansformation matrix can be wri£ten as

. hal '
(), = 1 pge) s(2) (3.29)
i=1

or

(HN)d = plsp23p3s.....spns | (3.30)

’
-

vhere the superscript (2] is omitted for clarity and

S py = (Lpal @ R =T . | . (3.31)

Defining the operators

S; 4 = SPy; i=2,3,h,..,n' ‘ . (3.32)
and

s, =8 - ' (3.33)

equation (3.30) can be written as

. |
Updg s T8y | , (3.34)

i=1

Tt can be shown that [13]

b Oy © Tlpg =y © T, ©) - (3.35)

Thus, 5; 4 can be written as

,
S,y = SP; T (IN/2 ® Telp-) Y
-1
=Py Py (IN/E ® T21Pl ©
=p; @y, ® T, @ L) (3.36)
= pi st

M
where

st = (IN/h @ T, ©) | (3..37)

The QperatorAs, s{ and Si—l are exactly the same as defined in edpations
(2.19} to'(2.231‘ for }=2, Sincé the twiddle factor operator My
of equation (2.17) is not present in equafioQ (%.BH) we can conclude
that the 0I00 FFT algorithm of section 2‘.3.1 can be dire_ct'ly spplied
to compute: the dyédic—ordered WHT if the twiddle factor multiplications
specified by operator B, are omitted. . .
From thg‘above discussion it is clear that we can compute the
dyadic—orderéd WHTﬁhsing FFT processor architecture of section 3.3.

- .

Since this organization does not require a feedback phase in which

.

the dats is serially moved from the output to the input buffer, the
throughput rate obtainable from the FFT processor architecture is
gregtef than that of the archi?ecture ?%opose@ in [22]. From the
discussion in section z.h\Fe note thaﬁ the FFT processor architecture

proposed here will compute the WHT of a NTPOint sequence in

(g—- T - 1032N),ns; whereas. the architecture proposed in [22] will

compute the same WHT in (3 g—- T . 1og2N) ns. This gives an

. increase in throughput rate by a factor of three. Also note that

the computatién of the WHT doeé not require multiplication by the
twiddie factors, so it is not clear whether the RNS implementation
;ffers g Significant advantage over the implementation of a WHT
processor using the Binary number systeﬁ. Depending upon the trade
offs involved we may opt for the Binary number system since the basié

architécture of the WHT processor proposed here is independent of the

number system used.®

i

3.7 SUMMARY

Based on the RNS prineiples- and technlqnes, a novel specmel

| purppse FFT p;ocessor architecture for coamputing the DFT of reel—

time input sequences has been presented. Using tﬁe ROM array \

] erchitecture of an RNS-based Butterfly unit it has been demonstrated

that the butterfly operetions required fqr the computation of the DFT
of an M—point seqnence can.be pipelined, resultlng in a throughput
rate. of the inverse of one ROM access time It has also been

shown that the throughput rate obtelneble from the serial sequentlal
processor archltecture, presented here, is compareble to that obtain-
able from the cascade/pipeline organizations which ;equire & number
of Butterfly units..-When it:is required to process data from a
number of input cnannels we also showed that the basic RNS-based

FFT processor architecture can be used to process data from r or r2

v

BN

'input channels with little modification. ' ‘L

For real—tlme filtering. appllcetions it hns been shown that
the basic RNS-based processor architecture can be used convolve a
continuous. real~valued input signal with an impulse reeﬁqpse of size
(g-f ll; where the FFT processor is orgenized to perform an N-point
DFT and inverse DFT operations. The convolver architecture proposed
here doee not require pre- or posd;g;defing of'the_data and is more
cest-effective than the organizations propeeed in the literature.
Tt has also been showu that the FFT processor architecture, proposed

kere, can also be adepted for 1mplementat10n of the dyedlc—ordered WHT.

78

hY

_ ‘Tt was shown that the througﬁput rate obtainable fram the FFT

processor architecture, proposed hére is three times the throughput

rate obtainable from the WHT p‘roceséor)proposed in [22].

L7997

.]
[. . ¢

MULTI-DIMENSIONAL ALGORITEMS AND PROCESSOR

»

ARCHITECTURES FOR COMPUTING A CLASS OF

UNITARY TRANSFORMS

4.1 INTRODUCTION . ~__

A

Many of the'fast.algorithms for compuﬁing unitary t;ansforms deal
Awith one—dimensional transforms. Multi—aimensional unitary transforms)
are gene}ally'computed by teking one-dimensional (1-D} transforms,
utilizing fast 1-D radix-; unitafy tréﬁsform algorithms, ‘along all
dimensions, successively. In thé past, due to a.large amount.of fast
- access memory required to store the input data and the relatively higher,
cost éf the memory component, it was neeessary to store the input /output
of a multi-dimensiénal algorithm in a félatively slow-speed bulk store
which resulted in & slow processing speed. To obtain ﬁigh throughput
rate from these impiementations,%nvestigations were limited to 'the
development of techniqugs that reduce the input/output operations
between the processor and the bulk store [35]-[37]. Also the throughput
rate constraints imposed by 'Ehe above implementations limited ;:,heir use
to non real-time applications.

With.the recent dévelopment of high density, hiéh speed and low
cost memory packages, it is now possible to provide a large ambunt of

memory at low cost to satisfy the high processing speed requirement imposed

';By"many redl-time applicatioﬁs in the areas of image-proéessing and -

"robotics. Receritly Gilbert et al. [L6] aescribed the ‘organization of

\ -

a real-time image processor u51ng a large-scale computer'and Joshi et

al.. [21] have proposed a mltiprocessor architecture for the

implementation of a tﬁﬁ}dimensional FFT processor capable of processing

"Images at video rates. Both of these archltectures use an 1n:ter1ea.ved

memory organlzatlon with multlple memory units to support the hlgh

bandwidth of the video signals.

"

v Since the 1mplementat10n of multi-dlmen51ona1 unitary transform

algorithms using a large-scale computer or & multi-processor organization’
is not very cost ef}ective for specifie fransfqrms we will investigate
cther approasches to the implementation of muiti—dimensiénal unitary
transforms, to reduce cost wiphout sacrificing processing speed
requirements. In this Chapter we investigate further the st?ucture of
multi-dimensional wnitary tran;form glgorithms“and ﬁresent speciél
purpose Processor architecture; capablg of processing images or other

multi-dimensional signals in real-time. These processor architectures

use a single arithmetic processor and multiple memory units and are more

‘yiable in terms of cost than implementatiohs using multi-processors or

large scale computers.

4,2 MULTI-DIMENSIONAL UNITARY TRANSFORMS

The unitary trensform of a u-dimensional array F(nl,ne,...,nu) of

size (MlxMEx...xMu)'is given by

: M-l M-l M-l BN ; s
P(ml,mE,...,mu) = g I ol F(nl’ne,...5nu)-Ofnl,né,;..,nu;

nl=0 n2=0‘ nu;o

- mmgseom) ,

m = 0,1,2,...,M 1 1=1,2,3,...,u. (k.1)

where P(ml,m2,...,mu) is thé transformgd;array‘of size (Ml,Mé,...,yu)
and O(nl,ng,...,nu; ml,nb,...,mu) is the transfgrmation kernel. For

" & unitery transform, the transformation given by (h.1) is exactly

inverti?le and the kernel O(nl,na,"..,nu; ml,mgg...,mu) satisfies the

. following orthornormality conditions [31]:

Ei‘ga.. EuO(nr,ne,.;.,nu; ml,m2,...,mu)-0*(3i,32,...,Ju; ml,mb,...,mu)
= §(nl-jl, ne—jes"'anu";ju) | : (h‘-a)

and

E E . o(nlan”"’nu; ml;mé,...,mu)-O*(nl,né,...,nu; kl’kE""’ku)

= 6l Bk m) (:3)

where 0*(x) denotes the complex conjugate of 0(x) and §(x) is the
Kronecker delts.

The kernel is said to be separable if it can be written as

O(nl,na,...,nu; ml,m2,...,mu) = O(nl’ml?-OE(BQ’mE)"'Ou(nu’mu) (h. 4}

For a separable kernel, the unitary transform of equation (4.1) is

given by

83

- ML M-l M-l '
P(m}’mé""’muq =L @ .ol Flopmg,..oin))0)(n),m) 0,(m,m,)

nl=0 n2= nu=0

. 0 (am) . TN sy

which can be computed in the folloui'n‘g;_é;teps: ' (

M-l
P.(m ,n 0 5.00,m) =)
1 T oTp 003 ‘ u n1=0
ME—l o
Pe(mlsme sn3 snh 3o :nu.) = nz_o Pl(‘ml sna ,u3s i :ﬁu) 'Oal(na sma) H
- o=) ".

. -
L]

u

—

Flo s0y5...,n D 0, (ny,m); (4.6)

P(ml’m2’m3’ Tt ’mu) = nl)io Pu—l(n%. - SR ’mu—l’riu) .Oﬁ(n:a :"mu)'
) S u .

Thus a separable u-dimensional (u-D) unit‘a-ry fc'ransforﬁx may be computed

by taking 1-D transforms alonga each dimension of the a'fréy ™, succeé'éively. :
For purposes of analysis it is cor.wenient to use a 1-D veétor

representation of the u-D arrays. - This may be obte;.ined by scannitig the

u-D arrays F and P in lexicographical order and then stringing the <

elements in a long vector. For example, the 1-D vectbr representation,

f, of a 3-D array F(nl,ne,n3) of size (Lx3xS) is given by
£ = [F(0,0,0), F(0,0,1), ¥(0,0,2), F(0,0,3), F(0,0,4)

¥(0,1,0), F(0,1,1), F(0,1,2), F(0,1,3), F(0,1,4)

F(0,2,0), F(0,2,1), ¥(0,2,2), F(0,2,3), F(0,2,4)

-
.

F(3,2,0), F(3,2,1), F(3,2,2), F(3,2,3), F(3,2,4)]F (L.7)

:

vhere [-]T denotes the trﬁnspose operator.
. \ Let the u—D arrays F and P be represented in the lexicographical
order and %heir vector rgpresentatlon be given by f and P respectively. -
w

In terms of ‘this vector representatlon the unltary transform ‘of equation

(k. 5) can be written as o I _ .)
PEE o o (8)

where T denoctes the (NxN) matrix rerforming & unitary transformation

on the (Nxl) input veétor f yielding the (Nx1) ‘output wvector p, where

u ' ' o " | | :
. N =n Mi- N : 4
o o i=1 | -

In [33], Good has shown that , ir terms of the vec%or representation
of the mitary transform of equation (4.8), the transformation matrix
* T can be written as the Kronecker product-5§ the one-dimensional

transformation matrices:

-

() (u-1) . (1)) (h.9)
T=(T, ® T ® -..... ®°T .9
oM Mia : ' ¥) ;
(1) _
where TM is the one-dimensional transformation matrix of the witary
i Al .
transform in the ith dimension with elements
(1) |
['I.‘M Iy = =0 (J oK) » (%.10)

and the Kronecker product is defined_as

- _.-—-L..

\l

_where A and B are matrlceé with elements bjk:?-[B]jk and ajk = [A]

The elements of T msy be obtained by the relation -
: u o {41) . .
FT]n ,m-= .H [TMi .]ni,mi \

i=1

1

where the row and column indices n and m represent the lexdcographic =

\

' 1

Ik’

ordering of (nl,né,nB,L..,nu) and (ml,mb,mB,...,mu)'respectively. For

example, for matrices A and B of size (ex2), the matrix C is given by

m
, n

0,0
0,1
+ N l,o

1,1

or

1

0,0

80000

810°00
800”10

8510

[c] ' L= b .
(?1’n2)’(m1’m2) R R

ot .
0’1 130) 1’1

. ;
801P00° 200%1 20101
91%0 %1% ®11%01

81P10 %00P11 201P11
81P10 20%11 faPny

a

For example, [Cl(g1),(1,0) = Poi ~ %11 -

Since the two definitions of a unitary transform defined by equations

4

e

(k.15)

L

(4.5) ana (4.8) are equivalent, equations (4.8) and (4.9) imply that

‘the o;ztput array, P, can be computed by taking one-dimensmnal
transforms, with kernel T]Sil, along each dimension of the array F,
seq_uent:.a.lly. ' o ‘ |

"From equations (4.9} and (L4.10) it is clear tl;at the matrix T
is unitary since the 1-D transformation matrices T(i) (i=i 2yee. ,u){.:
un:.tary Thus, ;11; is possible to spec:Lfy a dlffere:;t transformatlon
kernel for.each of the u dimensions (mzlt:.-—d:.mensmnal um.tary transforms
“ generally specify the same transformation al ‘é all the u dimensions}).
Although the above a.nalys:Ls is applicable to th s:.tuatlon where the
a.rrays have . dlfferent number of elements in each d:unens:.on;, we restrict
the mumber of e"ements in each dimension to a constant value, M. With

Al
these restrictions, the transformation matrix, T, of equation (L.9)

can be written as

(T=(h @ T, @ ® T,) o (bae)’
= [g,1 ®* .
where T}E{i) = Ty i=1,2,...,u |) , ('4-1.7.)

and [*] ®n denotes the Kronecker nth power. The 1-D transformation

matrix TM specifies the same transformation a.lbng all the u dimensions,

.\ h.2.1 _Multi-Dimensional Unitary Transform Algorithms
A.direct implementation of the transformation specified by (4.16)
would require M-" multiplications. Since the transformation matrix T

is séparable, the implementation of the unitary transform in u steps,

-

87

8Bispecifi§d by (4. 61 ieads t§ a considerable saving in coﬁputation.
Since, for many unltary transforms, the 1-D transformation matrix TM o
.itself can be factorized into a number of sparse matrices, and a further
saving in the computation can be obtained. The factorization techniques,
described by Good [33], that specify %he matrix T in terms of sparse
matrices which contain only the elements of the 1-D transformation matrix,

M’ also achieve similar computatlonal efflciency. Since many efficient
fgctorization of theAtraggggxmation matrix TM and the 1-D processor
'\!varchitectures impiementing these factorizations have been ?roposed in
the literature, we ﬁll» apply these factorizations bf the 1-D transformation
matrix T, to obtein different factorizations of T. It will be showm
that the factorizations sf T obtained in this way result iﬂ'high speed
processor architectureé capable of processing the mnlpl-dimensional input
date in real-time. | | '

For & number of uﬁitar& transforms, including Fourier [11]-[16],
Wélsh-Hadgmard [3],[4], generalized Walsh [6], generaiized transforms
‘[.7], Ha.arr 15] and many other traneforms {8], the 1-D transformation
matrix, TM’ can be expressed as the product of sparselmatrices. When
. Mis a‘highly'cohpésite‘nupber, i:e, M= rn,_TM can be factored inte
Y pr;duct_of n matrices;;f size (MxM) where each factor may consist of
‘Kroéeckef products of smaller sub-matrices. '
. ~

Lét the 1-D transformation matrix Ty be glven by

n : .
o= 1 s R - (4.18)
M m=l,fm _ .

where B_ is & sparse matrix of size (MxM). For example, Bméumsm for

88

v, , . \

the Fourier tramsform and B, = ‘Sm for Walsh-Hadamard trensform as,
' defined in equations (2.17)'and (3.34). Factorizations of Ty for
other transforms are given in the references [3]-[8].

v

Substituting the. factorization of T, into (4.16) ve get -
i | (4.29)

Using the relationship (3.14) between the Kronecker and otdinary

matrix product we can write (L.19) as - .
n o ‘

r=-n [8]®" - | | (4.20)

“m=1

—

ey

Using equations (4.17) and (4.20), the,unitary transform defined by
"(4.8) can be written as |

n _ .

p=1{nls]®%s | . (4.21)
m ‘ .
. m=1

which states that the computation of p may be divided into n .stages
where each stage operates on the output of t.he preceeding stage and
the operator of the first stage [Bn] ®u operates on the input vector f.

The camputation of the ith stage is specified by the operator [Bi] @u

gnd can be written as‘

\'_\i’i: [8,19% ¢, o L (4.22)
/ |

 vhere fi and p; are the input and output of the ith stage respectively.

The matrix '[Bi] ®u g or the same form as that of the milti-dimensional

i

89

. t _ L. :
transformation matrix T of equation (4.16). Since T implies that the

v

_output array P cen be computed by taking 1-D transforms, with kernel Tyo
along each dimension of the input array F, [Bi] ®u iﬁplies 'that Py or
‘its muilti-dimensional %epresentatiqn Pi may.be'coﬁputed by sequential
epplication of the 1-D oﬁerator; B, » along each dimension’ of the multi-

dimensicnal representation, Fi’ of fi' For a number of unitary

operators and when the factors of B, are substituted into equation (h.20),
T can be factorized further into sparser matriqgs. The factors of T
obtained in this way are much more sparse and convenient to implement

2]
than the factors obtained by using fa?torization techniques proposed by
Good [33]. : N

To derive. a specific algorifhm for the éoﬁputation of a unitary
transform, and a special pﬁrpoée processor architecture for its
implementatioﬁ, it is necessarj that the structure of the Bi's be k?own.
Since the structure.qflsi ié different for.different i—D unitary transforms and
a 1-D unitary transform may have a‘number of factorizations (see, for example
[ll]—[lG]rfor Fourier transform and [41-[8], [22] for Walsh-Hadamard,’Haér and
other unitary transformsf; we will discuss,'as examples of the sbove factorization
téchniqnes; the implemen£ation of a few algorithms only. Because of the
popularity and usefulness of the discrete Fourier and Walsh-Hadamgrd
transforms in the general -area of signal processing, we use the sbove
factorization techniques to develop’two— and multi-dimensional ¥FT and
WHT algorithgs, together with spec;gl processor structures for the

implementation of these algordithms. This development may be extended

£,

90

“to the implementation of other unitary transforms.

.
] - ' !

\ },2.2 Multi-Dimensional Discrete Fourier Transform

The discrete Fourier transform (DFT) of & u-dimensional array

h F(nl,na,. .. ,nl'i) of size M in all the dimensions, is “given by

u N
--Mil M}-:-l ' Mil ‘) .Elnimi o
P X = ‘ .- F(n, ,n.s...,n "~ (4.23)
(ml’m‘z" v ’mu) ni=0 n2=0 nu=0 172 u ‘ﬁ.; o ‘

+

M 5Ty e s M = 0,1,2,..,M1

where WM = e_?n'j /M. The DFT kernel is separable since —
N n;m, ‘ o
0, (n ,m) =W, 3 3=1,2,..,u o (4.2%) |

In terms of the vector representation, the DFT of equation (4.23) can

be expressed in the form of equation (4.8) as

p=Tf | | . (4.25)

where .

T = [7,) @ u (4.26)
and TM is the (MxM) 1-D DFT transformation matrix with elements

_ S
t,j X =Wy -]

Y

Based on the Kronecker product factorization of the DFT transformation
matrix, TM’ a number of FFT processor architectures have been proposed
in the literature [11]-[17]. As discussed in the last Chapter, very

high throughput rates may be obtained from the serial sequential type of

‘ ﬁrocessors using state of the‘art technology; here we wse the

‘ » _ o ,
factorization of the 0I00 1-D FFT algorithm of section 2.3.1 and develop

~

a serial sequential type of multi-dimensional FFT prQsessor.

From equations (L4.18) and (2.17) we can write the 1-D ope:gtof Bi
as . -

_ (r) (r) ' |
By ™ ¥m Sp « (.27

where the operators uéf)and siFj are_defined in equations (2.18) to

(2.23). Substituting the factorization of Bm into equation (4.21) we get
... ® (r) (r); @u
p={ 1 [u-'s""]% 7}

m=

: Usihg-zgjlh), equation (4.28) can be written as -

| n '
p={ 1 [uélr)] @u , [sér)] @u,y g - (4.29)

m=1

-

From equation (2.19) we have

S;:i =‘p;?) g;?){; m;2339"'sn ' (h.SO)
and ‘ |
srgr) = S(I‘) . - C | . (_h.31)

Thus, [s(r)] DU an be written as
“me=l
‘ (r) (r),,®
[SIS:%_] @ u = [Pmr) s T] v ()-l.32)

Again using (3.14) we can write

[SIE::{] ®u . [P,E,r)] ®uv &))@ (4.33)

~~

D

£ ' | (h.aali
‘m m v .

4

and f- ' i ’ B |
Fh @, pllyew S ()
! ' :)
detintiog R71 = 1O [sCI@% no s)
Riér)‘) [S(r)] ®u (h.36)
end (r) _ ; (r) @ ‘
r) _ ri- ®u
:‘bm = [um] . (ﬁ-37)
we can write equation (4.29) as !
T o | ": ®
p={ 1 ¢{F gl¥) b B : (4.38)

—— m=1— T — S

A
This equation is of the same form as that of (4.21) and hence.the
computation of p may be Eiivide'd‘into-n stages where the computation of

the ith stage is given by

' Cp () R o
Since wj(-r) and Rj(_r) have been defined as the Kronecker products of the
1-D operators ug), p(r) and sir), as given by equations (4.35) to

(11 37), p; may be computed by sequential appllcatlon of the operators

sgr), :(Lr) uir) along each dimension of the mult:.-dlmens:.onal
representation, Fi’ of the vector fi. As the operators s(r) or s(r)' ’

pér) and ugr) specify a base-r DFT, perniuta.tio_n and twiddle factor

multiplication operation, respectively, a stage consists of the sequential

applicetion of an ;r--:point DFT, permutation and twiddle factor muitiplication

o

dqq'

operation to the pointsin each.dimension of F&

Except for the fifst and the 1ast stage the operatlons §pec1fied

by the operators w(r) (rl may be written as _'; ' (:;M
o{7) 57 o [ufll',@u (o ml@“ Is(r)"l ®w . (h.ko)

i+l R

Th¢ operator Rir} specifiés that the operator S(r), be. applied to | . :

the points in egch'dimgpsibn of the input array, sequentially, and

ol)

as shown in‘section 223 i1, the operator & "' specifies that an r-point :

.DFT operation be performed on the data p01nts vhich are M/r uords

(r)

‘apart. Thus the operator R operaters on the points which are M/r

words apért in each dimension of the input array. For example, for &
2-dimensional arraf of size (8x8) and a radix-2 implementation, the _
operstor R§2) sgecifies & radix-2 DIT operation to be performed on the '

data.points which are 2 words apart in both the row as well as column

, (L : ‘
directions, i.e. on the points (0,0) and (0,2), (0,1) and (0,3), (2,0)

0,0 O,l 0’2 0‘!3
1,0 1,1 1,2 1,3
2,0 2,1 2,2 2,3

3,0 3,1 ' 3,2 3,3

|
|
|
|
. .
e
: . . S . . .

Figure 4,1 A 2-D SEQUENCE,

2 =

o

and ﬁé,2l etec. iIn the row direction end (D,O)_and (2,0}, (l;ol'and (3,0},
(D'e),and (2,2} ete, in c;lumﬁ direcfion {see Fig. 4,1), An address
separation of M/r between_the data points, in each dimension may be
Sbtained if the input array is divided 1nto rt blocks of data wvhere

each block of data is further divided into r sub-blocks. For example,
if fhe input array is assumeﬁ to be -a u—dimensionai h&pef-cpbe containing
i data poiﬁts, the hyper-cube is divided into,ru equal blocks where
each block is further sﬁb-dividéd into r" equal sub-é&ggis containing
(M/re)u data points. If the ggt; poihts in each sub-block are

arranged in le:d.pographical order and the;1 accessed sequeni‘ﬁtl&y the
data points from the sub-blocks of any block w1ll have an address
separation of-M/r in each dimension.

(r)

Since R specifies ru_l r-point DFT operatlons to be performed,

along each of the u dimensions, on the data p01nts vhich are M/r words

apart, sequentiamlly, the sequential (u r u-1) r-point DFTs may be

combined to form a single u-dimensional redix-r DFT cperation., For

example, for a 2-D radix-2 implementation of the array of Fig. 4.1, the -

sequential radix-2 DFT operations on the data points (0;0) and (0,2),
(2,0) and (2,2) in the row direction and on the data points (0,0) and

(2,0), (0,2) and (2,2) in the column direction cean be combined to form

" & single 2-D radix-2 DFT operation, since the radix-2 DFT operations in

both the row as well as column directions are specified on the same
data points. A u-dimensional radix-r DFT operatian requires that the
r" data points from the specified blocks be available simultaneously,

which may be achieved by accessing the points from the ru sub-blogks

-

of the selected Block simﬁltaneously

(r)

Similarly the operator w specifies that the operator u(r)

be applied to the points along each of the u-dimen51ons, sequentialli,
and ui r) specifies multiplication by the twiddle factors. As before
these sequeqtial multiplications may be comyined td give composite
"twiddle factors snd the miltiplication. by the composite twiddlie factors
may be.performed after the u-dimensional radix-r DFT operation.
This.separation of the radix-r DFT and twiddle factor multiplication
. operations in each dimension into u-dimensional radix-r DFT and composite
twiddle factqr multiplica?ibﬂ operations, leads to a considegpble |
saving in the number of muléiplications by the twiddle factors. Note
that a u~dimensional radix-r D?T operation combines {(u ru_l) 1-D
radix-r DFT operations but there are only (rh-l) composite twiddle

factor multiplications. If 1-D radix-r DFT operations were performed

along all the u.dimensions, sequentially, as specified by the operator

Rir), the number of multiplicetions, as specified by w(r), would be equal
to (u(rier?” l)). This represents a saving of (u{r'-r " Ly (x%-1)) complex

multiplications. For example, for s 3¥D~array, a 3-D radix-2 DFT
operation requires T complex muitiplications as compared to 12 complex
multiplication required by‘an equivalent 1-D radix-2 DFT operations,
which indicates a saving of 5 complex multipiications.

The above devélopment is a generalization of the multi-diménsional
FFT algorithm proposed by Arambepols and Rayner [éh]i3§§pe algorithm
proposed in [34] generates the Fourier coefficients in bit-reversed.

order and may be developed by using the above factorization technigues

2

~

and the post-permutation algorithm proposed by Corinthiqslllhj.“

.' For simplicity and conciseness we restrict our further =
discussion to the implementation of s two-dimensional‘CE—D) radix-r
FFT processor. The memory'agchitecturé of the 2-D processor canAEe

easily extenaed to higher dimensions.

. ~
4.2.3 Two-Dimensional FFT Processor Organization

For the 2-D redix-r FFT aigorithm equation (4.49), specifying

the operations to be performed during the intermediste FFT stages,
L

»

can be written as ~

o BT e @2 pG) @2)02 (.1)

i+l
Similar to the u-dimensional case an address separation of M/r2 in
both the ror/as well as colum direction may be obtained .if the input-

matrix is divided into r° blocks of data and each block is further

sub-divided into r° sub-blocks. For example, for M=16 and r=2 the

"input matrix is divided into 4 blocks where each block consists of

L sub-blocks as shown in Fig. 4.2. When the data from the sub-blocks
is accessed sequentiglly, as indicatead by the arrows,.the address
separation in the row aﬁd column direction is always k.

For the 2-D iﬁplementation Rgr) specifies 2r r-point DFT operations
to be performed on the points in the rows and columns,which are M/r2
rows and columns-apart; respettive;y. The squential 2r DFT opefatiéns
can be combined to form a single 2;D r-point DFT operation.l As shown

in Fig. h.é, the r2 data points required for a 2-D r-point DFT operation

-
’ ' .
97
e ' . . . ¢
BLOCK (1, 1) - BLOCK (1. 2)
Sub-block (1.1} Sub-bloek (1.2) Sub-block (1.1} K Sub-block (1.21'

0.0 0.1 0,2 0,3| l0,a 0,5 0.6 07| jo.g 9.9, 0,10 o,12| [o,12 0,130,249

MR 11| | [y
. i l i T 1,18

1.0 | A N S |

b e . Lo 218
2,0 - ~ 1 _ | ' ' . . |
[f | M E o 1,18,
3,0 T M M : 0 - .
Sub=block (2.1) Sub-block (2.2} Sub-block {2, 1} Sub-blogk (7 2]
; 4,18,
s il 3 sy o Ot 9 0 -
.0 N] - R | , 1 »
L [| 518
o o> o tmsr—} - OOt
5.0 1 R , R
l > " o 9 L—m—b—o——-T ‘l W r et
6.0 | RN ' . — N |
L L—o—l——n——o l L .L 7,43
P, VP —C) [S 5 Y o - ey
7.0
'BLOCR (2, 1) ' . BLOCK (2, 2)
Sub-block (1,1) Sub-block (1.2} Sub-block (1,1) sub-block (L.2)

8.13%

o———o—-v-_—o-j

|
|
|

— [|| o
sa.c)L 1 r ,] R
R I i S, Lo e [1018
10,9]) | N 1 l’ -

L L 1S
ngi o L o oo '

Sub-olack (2.1) Sub-bloeck {2 2} Sub-bloek (2,1} sub-block (2,2}

lzm °_—°"_°'j | o-——o—a—:o—-—cf - o ‘_A 12'?

== ==
' n—

-[e 5 [Ok r e [——o—‘—o—“—?
14,0 N 1 . . i —
[Qe O — L@—q—o—d L O Pl 5 .r Ol O ls'!).s
1.0 3.t 1%.2°15.3 | |15.4 15 % 1‘5.‘6 13,7 19,3 's.9 15,19 15, 1 15.12 15.13 18 14
Fig. 4,2 - ?Partitioning of a 16 x 15 array inte sub-blocks ~
LT

o ‘rdicate the 1§50 elament of the array

98

mey be ébtained, simﬂ.taneo&ély, by ac_cegsing the points from the r2
s;b—blocks of a selected blocg. |
: S;milar to the }—D FFT processor organization of secfion 2.3.1
‘ Fig.lh.e suggests a seqneﬁtia; memory structure for the operations
: . 4 .
spécified by the stage operators wg?) Rgr) . A processor organizafion
utilizing a séquential memory s{ructure is shown in Fig. h;3 and
consists of two memory buff@fs BUFFl and BUFF2 and a 2-D radix-r
Butterfly unit. _Eacﬁ buffgr hes a s%orage-capaéity'of MQ complex
words and consists of r2 memory ﬁlocks where each block is.further
divided into r2 sub-blocks (SBs) and each SB stores (M/re)2 ﬁords..
The SB's alw;ys store the input data or intermediate output of the
FFT stages, éeqpentially, as indicated by'the arrows in Fig. h.2.‘
BUFF1 and BUFF2 are used to §ppply data to, and receivﬁ output
from, the Butterfly unit, ai:cematively.
Except for the first FFT stage, the permutation and DFT operations
are specified by the of;rator Rir) = (pi(i])_ ® pgg)(s(r)' ® s(r),).-f-
To implement these operations, the‘r2 points at the top of the sub-
blocks of a selected block form thé input data to the Butterfly unit
where the computations for the 2-D radix-r DFT are performed. The data
from the SB's of the selected block is always accessed in sequential

order and the selection of a block is performed as’ given in the following

steps. The steps are written in FORTRAN like statements where the block indices

// t The stage index i is specified in the inverse order, i.e.

for 1=1,2,3,..,n, stage number j=n,n-1 n-2,..,l1.

L

T

. aurli
8lock {1.1) | [Block (L2} = & EEEEE {L.r} o
- . , .
o [Block {2.1) Alock (2.2 = = = [Block (2.5) —t
i | 1 - MUX
]] - v
1 | |
. |Block {r, 1) Block (&) =™ = ™ | #leck (r.r)
:102 g4 .
Block (1.1 | |Block (121} — = = |8lock (L,2) LL
. r
. I 2-0 Radix-c
LT Block (2,1) Block (2,2)f = = =— ['Block (2.r} Buttacfly
RO | PR ! | 1 vnie "
‘ "“Jg | t t
o | t)
1] " - =
Block (r,1} Block (r,2)| = =— =—|Bloek (r,z)
Fig. 4333 = 2.0 radix-r Processor Organization
BLOCK (K, L)
j,-
it SBIJ. . |—' SBu_ P = - - r SBu_
{(K.L)th ™38, > s8,. o -~ - r SBy,
output Point s d -
from the]
Butterfly Unit 1 : =
| . .
1 _J _J E—a—
1 sB_, l—- SB_, - - - l—- SB,. —ar

Fig. 4,3b = sub-division of & biock into sub-blocka

Qutput
Points -

100

g

refer . to the row and qoiuﬂn indices of the selected buffer

block sh@ﬁn in Fig. 4.3a, L
\ ’ -
For the jth stage of an (MxM) transform

10 DO, 100 K

i,r - -, v

DO 100 T

‘n

1, (9 2uy/:2) B (4.42)
D0 1200 L = 1, r |
" {select Block (k,L)} e
"o 200 5 =1, o972
"{select the next r° points from the 2 sub-blocks of the
Block (K,L) in the seqpential order and compute a 2-D
radix-r DFT}

e

100 CONTINUE

P

IF (More data to be processed?) GO TQ 10.

The sbove procedu;e‘is repeated until the input buffer is empty.

Note that for ﬁhe Jth stage we seiect r'j—2 points from the selected
- block consecutively.

The buffer configuration to store the output from the Butterfly
unit is fixed and is indépendent of the FFT stage. The r2 output points
from the Butterfly unit ‘are written into the r2 blocks of the selected-
buffer. Each block receives one output point and the sequential output‘
from the Butterfly unit is written into the selected SB sequentially.
The procedpre to select a SB to stare the output point is given in the
following FORTRAN'liRe steps, where row and column indices réfer

to sub-block indices of a block as shown in Fig. 4.3b.

>
transform size of OaxM) _
0p=1,r) . C (.43) |
D0 100 1= 1, M2° | | o
0 q=1, r_.

{

70 200 & = 1,M/x°
__J_'{{tcgthe output from the Butterfly Unit in the sub-buffer

SBPQ of the selected buffer,in the sequential order}.

100 CONTINUE

At the termination of the above sequence of operations, the selected
buffer stores the output of the current FFT stage. This output may
n;n-r be accessed to process.the next FFT stage. When all the FFT stages
have been processed, the buffér storing the output of the last FFT
stage store's' the Fourier coefficients in the natural ascending order.

The operations specified by the operator R1(1r')=. (s(r) ® s(r))
corresponding to the first FFT stage may be implemented by accessing
t_he r2 points from the selected buffer, in seq{xential order, &8s
specified by the previous algorithm. Thus the procedure for accessing

and si:oring dsta for the first FFT stage is the same.

The (r2 ~ 1) multiplications by the composite twiddle factors,
(r)

as specified by the operator tbi

, are performed by the Butterfly unit.
These composite twiddle factors may be preé-computed and stored in ROMs .

For example, with r = 2 and M = 8, the composite twiddle factor matrix

for the first FFT stage is given by

+J

1 1 1 1 wp ‘-wi wz w3

1 1 1 1 W w; w2 w3

1 1l i 1 wq ul wa w3 (

' 1 1 1 L wo wl w2 wB.)

wéE) = 'wo w0 wp wp w0~, W W w3

Vl O o R - wy

UE lw2 W2 We W2 W3 Wh \65

. O R A

where the ijth element of this matrix is the composite twiddle factor
for the corresponding element of the input matrix. To access these
twiddle factors from the ROMs we set up two counters, i and j, where

,g'—l. If, after every 2-D radix-2 DFT operation, J is

i,d = 0,1,2,..
incremented by one and after every M/2 counts of j, i is incremented

by one, the composite twiddle factors to be multiplied by the output

of the DFT operation are given‘ﬁy 1, wi, w and wi+3. Thus, the required
twiddle factors may simply be accessed by addressing the ROMs with

i, J and i+]. The twiddle_factors required for the other stages may

be generated from the twiddle factor matrix of the first stage. For

the mth FFT stage we set (m-1) 1éést significant bits of i and } to

zero first and then address the twiddle factor ROMs with+i, J and i+].
The sequence in ﬁhich the twiddle factors are multiplied with the 8utput

of the 2-D radix-2 DFT operation is shown in Fig. 4.h4, where 3 indicates

a 1-D radix-2 DFT operation and the indices of the input and output

X(s,t)

x'(s,¢t)

x(s, £+ 85 X' (s,
iy
(i+3)
: M M |
x(s+-—2', t.+—§) X'(s+
r r

~

Fig. 4.4 -A 2-D radix-2 Butterfly operation

e e e e

104

“varisbles correspond to the row and colum indices of the input
matrix. |

For the last FFT stage the twiddle factors specified by the
operator w(r) are equal to unity and the multiplication operations
may be skipped. Fig. &, 5 shows the flow graph of the 2-D radlx-e ’
algorithm for a DFT of size (8x8).

Since & two-buffer organization of Fig. 4.3 is only suitable for
the case of non real—time input, we propose a three-buffer memory
strﬁcture, similar to the 1-D FFT processor organization of Fig. 3.5(a),
for real-time 1nputs as shown in Flg 4.6(a). Similar to the operation
of l-D FFT processor, twa of the buffers of the 2-D FFT processor of
Fig. 4.6(a) store the input and output of the 1ntermed1ate FFT stages.
The third buffer is used to collect the samg&s§ input and output the

Sy
previcusly computed transform data, simultaneously:x A1l the buffers

of Fig. 14.6(a) have the same érganization as that of Fig. 4.3(b) except

‘“that input dats and output Fourler coefflc:entsmay now be accessed

simultaneously. A buffer organization for real-time input/output
operations is shown in Fig. 4.6(b) where M denotesta miltiplexer wnit.
In order to store the inpu£ matrix into the selected buffer, each SB
must be loaded with the corresponding section of the input matrix. Since
the input matrix is generaliy in the row scanned form, each row of the
input matrix can be divided into r2 sections and each section is stored
into the corresponding sub-block, sequentiall;. When a new input point

is to be written into a sub-block, the Fourier coefficient cofresponding

"to the previous FFT operation is recovered first and the new point is

105

Awile g X g ® 303 wmay3ob(® g0 I 0 T-X1peI A~ IO ydnalb moyg - n.#. .wﬂh

I

"
Rt al

. me wmw

VTG M B Gol

P LE-LE b
» =

UM

S\’ 7

S\ s
e\

‘ v

.- o

-'!m\ﬂhﬂﬂﬂﬂ-moﬂ et T O P O Py AN
A py L -l S A
g b B B G LR Y T RN R A Y

AT O O . CVY
P -) T L
MMM T AR S

- . o

- - -
DO SO QOO mam it

D--. MM YN OO MM ORE NP Qe O .
- “ s - s

ago0g 000098 90 0090

DeuMm
-

l

T e ;
iy '"V. R : ub‘
C s S O AN e O, AN /A\
N /7O ; N/ A8 NN\

AN \Vi \\.\mb.\w.//,,

F " OO : P z 4
NS N\ AN

LSS NN TN
NS S AN, TG N DR
NSO .%%w \Y/ i AR
ENRALSS NN 2 NN
NI SR KNI Z SN
I e A AN
L IHARONER TR0 DRGSR, / K
Vit \..“””,ﬂ,....\.".ﬁ%@.f : .""“,”ﬁ....ﬂ,%%\\w@w“@w.., ..”.",....@..\.\.,.//@ o \\\M.,.“%ﬂ.ﬂ.;
vt oA 77RO L7 YK NN 578K O\ 2/ N
SN AN N
.Ml.a \o‘@f’, ‘o/’/\ ‘/o \ : \ soo’, ‘o/’/\\ 4 ./ z \ O/../’, ‘/’\,\o‘}“\" \\0 /
2t NN N VAN a5\
OSSO N RSO
NS AR \\ RN
i AN\ KK e AN A ! AN/ R
=7 ,M///Mw"/ S ,,/////&Q, \\\\ | N,

LA

BUF1 —
=: DISTRIBUTO BUF2
DATA] -r
4}‘ +
BUT3

To

Butterfly
Unit

Ta

R Butterfly
Unit

'QUTPUT

-t

= FOURIZR
COETYICIENTS

2-D RADIXwr

10 BUTTERILY
- UNIT

v

aLocx (1,

'Fis. 4‘.68.‘-.- -FFT Processar Organization for Real-Time 1:{0

!
_l

3|

-

[
w
[o
-

l.
in
o
™
[¥

I._

T

__'L__
]

+

L 3

]

r
|
|
l
|

s
|
I
|
I

Y

L
il

A

| — —

I — = - ——

o |

|

I

b

-

SB

o+

r" 22

2

AT+—

aLocxK (2,

—— e i — —— —— —

1)

l
|
L

BLOCX (2. 2)

Fig.4.6b = A coal-time “uffer organization for a 1-D radix-2 FFT processor.

MUX

I

106-

Input
Data

from

Buttacily

Unit

107

\ . - . .
stored in the same mé.mory‘ location. The Fourier coefﬁcieﬁts thus
generated are also in the row-*-sdanhed naturaliy ascending order.
| Tue to the simd;aritj between £h§ 1-D and 2-D FFT processor
| 'oréanizations, the buffer allocation for the rgai—ti:me operation of the
2-D processor is the same as that of Fig. 3.6 of the 1-D processor.
:Thus during the computation of a 2-D DFT, the processor organization,
of Fig. 4.6(a} will perform the inpﬁt fmc‘L output operations in real-

time.

L.2.4 -RNS;BaSEd 2-D FFT ch_es%or Orga.niza.tion-
~, The 2-D FFT processor -organ_iz-ation discussed in the previous
sectiqns are iﬁdependent of the architecture of the Butterfly unit.
AS discussed in Chapter 2, the implementation of the arithmetric operstions
' via RNS offers many advantages.over the use of the binary number sjstem.
Simils.r t8 the architecture of the gutﬁerfly unit of the 1-D FFT proéessor,
we can alsc;'organize{the 2-D r-point DFT and twiddle factor multiplication
operations in a pipelined RNS-based Butterfly unit. This high speed ROM
. array architecture of the 2-D radix—r‘Butterfly unit ideally lends itself
to the wemory organization of the 2-D FFT processor of Fig. L.6.

The block diagram of the 2-D radix-é buttekrfly- operation of Fig. 4.k
- also repr;asents the arithmetic operaf;ions to be performed in a parallel
pe.a.th of the RNS-based Butterfly un:Lt A ROM array architecture,
implementing arithmetic gpere:bions for a parallel path, of the 2-D radix-2
Butterfly unit is shown in Fig. 4.7 where O indicates a look-up table

(ROM). Similar to the 1-D FFT butterfly structure, the organization

r

‘108

| Rex | .. ‘ - '
*(5,8)!m, Dy - >[REG. REC. | [ReX(g |y

| Tmx

(s,t)lzﬁi |

IM(S%,tﬂmi '

o m

F i
v

ImX M M — -
| (S+E,t+-]1-) !mi v
Fig. 4.7 A RNS BASED 2-D RADIX-2 BUTTERFLY STRUCTURE -

@ INDICATES A ROM - PERFORMING THE CPERATION *

8 X)) ¢ INDICATES ¢ = |a-b|

109

of the 2-D radix-2 Butferfly unit can'also ﬁe divided into a h—;£age‘
pipeline, and thekgata through.this.pipeliﬁe may be clocked at a rate
éf 1/T where T is’the ROM access time. |

Since, in RNS, scaling of the output of the Butterfly unit is
required to avoia any overflow of the RNS dyﬁamic range, the pipelined
ROM array implementation of the scaler of Fig. 3.3 for l;D FIT
prbcegsor can also be used to scale the output of tﬁe 2-D rédix-E

0‘(
Butterfly unit. i -

. L]

When the N-stage pipeline of the scaler of Fig. 3.3 is combined
with the L-stage pipeiinJ?;f Fig. 4.7, a (W+4)-stage pipeline having
& throughput rate of 14T is obtained whire T is the ROM access time.

From the above analysis it is c¢lear that the architecture of the.

41'
- '/‘\‘-_

2-D and 1-D FFT processors are highly similar. Thus if we replace the
buffers and Butterfly unit of the RNS-based 1-D FFT processor of

Fig. 3.7 with £he buffers and Butterfly unit of the 2-D FFT processon,‘
we obtain an RNS-based 2-D FFT processor. Exceﬁt for some minor
differences iﬁ the organization of the data paths, the two processors'
architectures are functionally similar.

In a 2-D radix-2 (MxM)-point FFT processof, §? 2-D radix-2
butterfly operations are performed in each stage of the FFT algorithm
and there are logaM stages. Thus the totel time required to compute
an (MxM) point DFT is T x — * logM, where T is the inverse of the
pigeline throughput rate. For example, for T =_T0 ns and M = 256, a
(256x256) point DFT can be computed in 9.175 ms which gives e sempling

frequency of more than 7 M. samples/sec for the data. Moreover, since

2T
JFe

110

the‘input matrices are generally real-valued, tﬁé throughput can be

douhled by processing two sets of input data 51multaneously.

h-E-SA Mult1—D1mensional Generallzed Walsh and Whlsh—Hadamard

Transform Algorithms

The Welsh-Hedamard transform of ‘section 2.4 has been generalized
to & mich larger class of ﬁnitary transforms. This class of unitwry

transforms has been termed the Generalized Walsh Transform [6]. 1In

" terms of the vector representation, the generalized Walsh transform of

a u-dimensional array F(nl,na,...,nu) of size M in all the dimensions

can be expressed in the form of equation (4.8) as

p=Tr¢ (L.4s)
where T énd p are the'vectpr representation.of the input and output
arrays F(nl,ne,. .. ,nu) and P(ml,mz,... ,mu) respectively, and %[TM] @ v
where TM is the 1-D generalized Walsh transformetion matrix. TheuiﬁD
generalized Walsh transfogmation matrix TM of order q can be generated

from the core matrix 'I'q of order q which is defined by [e]

0 0 0
w W W
0 1 a-1
w w - ‘ - L] L] - w (_h.hs)
_— W Fla-1)
a . . -
. . o
w° Wit w(q_l)

11

any/q and the elements of 'I‘q are given by [Tq]k£= W, Note that

where W=e
the generalized Walsh transform core matrix of order M is same as that_
of the 1-D DFT transformation‘matrix of size (MxM) which is defined
for thg'DFT of a M=point sequence. fhus the u—dimeﬁsional generalized.
Walsh transform of order q of an array f(nl’n2""?hu) of size q in “
all the u—dimeﬁsions can ge computed by a u-dimensional FFT algdrithm
as discussed in the previous sections. ‘

The 1-D generalized Walsh transformation matrix T, of order g,

M
where M ='qﬁ, is defined as [6] ‘

- ®t > ' |
Ty = [Tq] y | - (4. 47)

which is a tth order Kronecker product of the co¥e matrix Tq. Since

equation (4,47) is of the same form as that of (4.26), an M-point 1-D
generalized Walsh transfonh of order g can be computed as a t-dimensional,

M= qt, DFT '‘defined for a t-dimensional array of size (qqu..dyq). For this we
must represent the 1—D'M;point input sequence as a t-dimensional srray whiech is
the inverse of the 1-D vectdr representation of a +-dimensional array. To
represent & 1-D veétor £(i),i=0,1,..,M-1, into a t-dimensional array
F(il,ia,;.;it) of.éize {qxgx..xq) we use the following felatign to compute indiges
ig, 2 = 1,2,..,t_of the array F from the index i of the vector f:

i =gt i)+ a2, 1, + 3. O T ML (4.48)

This is equivalent to finding the t-digit base-q representation of the
number i. For example, for t=4, the base-l representation of the decimal

number, 45, is given by i, =0, i, =2, 13 =3, 1) = 1. Thus, when

112

the input vector is represented.as a t-dimensional array, we can
campute thg'l-D generalized Walsh transform by the t-dimensional
radix-r FFT algorithm of section 4.2.2 where q=ro.

For the computation of the u-dimensional genenai;zed Walsh

‘transform of order q, equation (4.45) can be written as
- 1Ay |

p = [mM]®u.. £ | | (4.19)

Using (4.47), equation (4.49} can be written as

il

p=[I1] ®r ®u .

or

g
f

[Tq] @ut . | (4.50)

Since the t;ansformafion matrix of eQuation (5.50) is of the same form
as that of (4.26), the genéfalized Walsh transform éiven by (4.50) may
be computed as (u . +) - dimensional DFT whose 1-D transformation matrix
is specified by Tq. For example,'a 3-dimensional generalized Walsh

transform of order 4 of an array F(nl,ne,n3) of size (16x16x16) is equivalent
to & 6-dimen§ional DFT of an afray F'(nll’n12;n21’n22;n31’n32) of size
(hxhxhxhxhxh). But, to use the DFT algoritim to computeé the generalized,
Walsh transform we must represent each dimension of the array F as 2-
dimensions of array F'.

In section 4.2.2 we saw that, for the computation of a u—diﬁe;siénal
(MxMx..xM)-point DFT, a considerable savingslin the.number of multiplications
may be obtained if the radix-2 butterfly operations in all the u—dimensions

are combined to form a u-dimensional bupterfly operation. For q = rn,

113

we -can compute the genérali;ed Walsh transform of equation (4.50) by
using & (u . t)-dimensional radix-r buﬁterfly operation, This will
. lead to a ;aving' of (u.t (ru't - ru‘?_l) S L 1)) miltiplications
| over the implementation of equation (4.50) ﬂy computing 1-D g-point
DFT along all the (u.t) dimensionsi_ Fﬁr.example;_for the previous .
example, u = 3, t = 2, a radix-2 ;mpiementation leads to = saving of
67% in the mmber of mﬁltiplications.

The algorithms to cﬁmpute the multi-dimensional Walsh-Hadamard
transform are éimilar to those for the camputation of Ceneralized Walsh
transforms sincé the core matrix of equation (h.46) rg@ucgé?to the

core matrix of the Hadamard or natural-order Walsh-Hadamsrd transform

for g = 2. Thus from equation (4.46) we have ,
o2 .
Ty = [1 _] o . (4.51)
which is same as the core matrix of equation (2.27). Similar to
equation (4.50), the u-dimensional Hadamard transform of an array
F(nl,ne,...,nt) of size, M = 2t, in all the u-dimensions can be

written as
p=[r)®%* ¢ | (L.52)
and hence can be computed as a generalized Walsh transform of order

2,

From equation (4.51) and (4.52) it is clear that the computation
of (4.52) does not require multiplication by the twiddle factors and can.

be computed by addition and subtraction of the elements of the u-

1k

.

dimensional ervay. Since the number of additions and subtractions are
constant and independent of the implementation of equation (h.ée), we

can-also implement (h.sa) as
p=WQ®“.f.' - o S o (4.53)

by using a different factoriz§£ion.of the 1-D transformation matrix
TM; By using the factorization of the nﬁtural-order Walsh-Hadamard
transformation matrix proposed by Geadah [22] we can develop an algorithm
similar to the DFT algorithm of section 4.2.2. Since in Chapter 3
we showed that a l-D dyadic-ordered waléh-Hadamard transform can be
implemented on 8 1-D FFT processor we show here that a 2-D dyadlc—
ordered Walsh-Hadamard can alsc be 1mp1emented on the 2-D serial
sequential FFT processor of section 4.2.3.

_.Substituténg the factorization of the 1-D dyadié-orderéa Walsh-
Hadamard transformation matfix Ty; given in equation (3.34) into (hL.53)
we get

190 e sk

where ;.1 piS' is defined in equation (3.36). Since s; of (4.54)
S(r)
m

of (4.30) are exactly the same operator for r = 2, we can
write (4.54) in the form of (4.38) as

n
={n 3(2)}
1

(4.55)
i=]l

2)

vhere R;”' is defined in equations (4.35) and (4.36). Except for the

(r)

twiddle factor operator ¢ » equations (4.55) and (L.38) specify the

115

: same'bperamions w?an r =2, Thus if"the twiddle factor multiplications
aré suppressed; fhe 2-D radix-2 FFT processor of section 4.2.3 will
also;ﬁompute the dyadic—order ﬁalsh—Hadamard ﬁransform-of an array.of
size (MxM).

4.2.6 Other Multi-Dimensional Unitary Transform Algorithms

The factorization of the multi-dimensional transformafion matrix‘T
_of equation (4.8) is not limited to the DFT, Walsh-Hadamard and
gene?alizated Walsh transforms as discussed in the‘previous sections.
Since it is known that the l-p t?ansformation matrix TM of @ number

-of unitary transfofms,-such as generalized transforms [7], Cosine and
Sine [31], Haar and generalized Haar [8], can be specified as a prod‘l.ici:'
of sparée matrices, equation (4.21) can be used to compute these multi-
dimensional unitaryAtransforms also. Equation (h.21) specifies that a
separable unitary transform can be computed in stageé where each stage :
performs the specified arithmetic operations on the data simultaneously
along all the dimensions of the multi-dimensional array as opposed to the
conventional teéhnique of computing the 1-D unitary transform along

: ail the dimensicns, successively. For a multi-dimensional array of si;e
M= rn, in all the dimensions, this leads to a large saving in the
number of multiplications for the DFT and generalizéd Walsh-transforms
as shown in the previous sections. To achieve this we used the symmetric:
property of the-factors of 1-D transformation matrices of the DFT and
éeneralized Walsh transforms and combined.the sequential butterfly

operations in all the dimensions into a muiti-dimensional butterfly

116

7]

- w

—a .
oﬁer;tion. Since génefaiized Sine and Cosine transforms can be -
computed using an FFT algorlthm a saving in the number of multl-
plications can also be achleved in the computatlon of multl— |
dimensional generalized, Sine and Cosine transforms. In the case of
other wnitary trénsforms, ;t is not clear whether savings in the
cqmputational effort can be achieved or not because the factors of
the;r transformation m;trices do not exhibit any symmetry properties
[71,18]. But the facforization techniques discussed in the previous-
sections may be applied to develop speéial purpose processor

—&rchitectgres for high speed applications.

4.3 SUMMARY

The development of fast algorithms for computing a class of
multi—dimensional unitary transforms, having separable kernels, has
been presented. The technique is‘based on the f;ctorization of ﬁhe
multi-dimensional transformation matrix into Kronecker products of
one—dimensional transformation matrices. For a number of unitary
transforms, including Fourier, Walsh-Hadamard and generalized Walsh,
the one-dimensional transformation matrix can be expressed as a product
of sparse matrices. It has been demonstrated that the cne-and mlti-
dimensional factorizations of the transformation matrix can be combined,
resulting in fast algoritims for multi—&imensional unitary transforms.

- These algorithms compute the unitary transform of a u-dimensional

. . . . n .
array -of siee M in each dimension, M = r’, in n-stages, where each stage

operates on the data in each dimension.

Based on tha‘fast mﬁlﬁi—dimensional unitqry transform
algorithms, the dgyeloPment of mult?-dimensional Fourier,
Walsh-Hademard and generglized_walsh transform algorithms have been
presented. It is-shown that the u-dimensional Fourier and generalized
Walsh transforms can be implemented wifh a u~dimensional radix-r
butterfiy opération, wihich requires considerably less complex
multiplications that the conventional implementation ﬂsing one -
dimensional radix-r butterfly operaﬁion. The savings in complex
mltiplications is a function of both the radix, f, and the number of -
dimensions, u, and i;'is'greater for higher radices and larger
dimensions.

The nature of the-fast algorithms for'oﬂé—, @wn— aﬁd multi-
dimensional Fourier, Waishhﬁaraﬁard and generaliéed Walsh transforms
‘resulted in slmost identiéél.précessor architectures. Based on the .
fast algorithms, the develoﬁment of new two- and multi-dimensional
Fourier, Walsh-Hadamard and generalized Walsh transform processor
architectures have been presented. It has been demonstrated that
these processor architectures are cgpaﬁle of processing large band-
‘width.input sequences in resl-time. Tt is also shown that the
factorization techniques developed in this york ean be easily extended
to the development of special purpose processors for the cémputation

of a number of other unitary transforms.

. CHAPTER 5

HIGH-SPEED CONVOLUTION

-

5.1 INTRODUCTION

Two—dimen§i0n31 convolution is one of the impbrtant operafions
in image processing, which is widely used in image enchancement,
image restoration and feature extraction. For véry high speed filtering
operations FFT téchniqug is normally used since very high throughpuﬁ
rate mhy be obtéined by the use of syeg}al purpose hard;ired FFT
processors. In the past most of the published work‘concéntrated on
the implementation of the convolution operstions on a general purpose
processor, resulting in a slow processing speed. In this chapter we
investigate the use of E—ﬁ FFT processor, discussed in Chapter k, to
perform convolution of a‘large 2-D input matrix with a filter imp se -
response for real-time fiitering operations. TIn Chapter 3 we showgd
that the 1-D FFT processar can be used to compute coﬁvolution by the
overlap-save method of sectioned convolutions, by providing extra
buffers at the input and output of the FFT processor." In this Chapter
we show that with the g;ovision of a special memory organization we
can also compute 2-D convolutions by the overlap-save technique of
sectional convolutions. Since a 2-D bFT or convolution can also be
performed by using & 1-D FFT processor, we show here that the 2-D FFT

processor of Chapter 4 is more cost effective than the 1-D FFT processor

118

179,

of Chapter 3.

5.2 TWO-DIMENSIONAL CONVOLUTION.USING A 2-D° FFT PROCESSOR

The periodic convolution of two 2-D periodic sequences, f and h,
of period M in both the\dimensions is defined as
M-1 M-1 | ‘ .
glo,n) = 7 £{k,R) h(lm-kl_M,ln-le) , (5.1)
: k=0 2=0 .
Similar‘to the 1-D case, the DFTs of the sequences, g, £ and h, are

related by -
G(m,n} = H(myn) + Flmw,n) 5 myn = 0,1,2,...,M1 {5.2)

vhere G, H and F are the DFTs of the sequences g, h and f respectively.
The séduence, g, may be computed by taking the inverse DFT of G.

Iﬁ image processingfapplications; the 2-D sequences are generally
of fini£e duration and we aré interested only in computing the linear
rather than the periodic convolution. The above technigue of computin

periocdic convolution can also be used to compute linear convolution by

considering the finite duration sequences as periodic sequences of

4

} .
period M in both dimensions, with M > (N+L-1), where the finite
duration sequences f and h are of size (NxN) and (IxL). A period of

an (MxM) sequence, f', may be generated from the finite duration

sequence, f, by the relstion

n
o
~
o
~
=
§
|

f(m,n),'m,n
£'(m,n) = (5.3)

0 , myn =N, N+1,.:.,M-1

120

Using (5.3) we can also generate an (Rli‘sequqnce, h', from the
(IxL) sequence h. If the.(M&Ml;point DFTsrof the sequences.f' and h! are
denoted by F' and H respectively;'then, using (5.2) we.can compute
.the sequence G' = F' « H' mnd the inve}se DFT of G' will result in the
desired output sequence‘g. |) |
In”man& situations the-size, {(Nxn), of the sequence f, is much
larger than the size, (IxL), of the sequence h. It becomes inefficient
and impractical to compute DFT's of sequences of size (MxM), where'M
is large, because a large amount of memory is requlred for 1ts
1mplementat10n on & general purpose or a special purpose processor.
In these circumstances, the overlép—add or overlap-save method of
sectioned coniolutions may be used to compute the.coﬁvolution. As
discussed in Chapter 3, we preferred the overlap-save metpod over the
overlap-add method to implement 1-D convolutions since the overlap-
add method requires an extra operation of addition of the partial
results. 1In this section, we investigate the implementation of 2-D
convolutions using the overlap-save méthod qf sectioned convolutions.
For the implementation of & 2-D convolution by the overlap-save
method, let f and h be the input data snd filter impluse-response
sequences, respectively, and N >> i. If the FFT processor can perform
a 2-D DFT of size (MxM), the input data matrix, £, is divided into
overlapped sections of size ({(M-L+1)x(M-L+1)}) and the different sections

of the input matrix may be convolved individually. Since the input

matrix is generally real-valued, two Sectiohs‘of f may be processed

121

simultaneous%y. Fig.s 5.1 shows the sub-division of the ihppt matrix

- of size (NxN) where the shaded area is the oyerlap between the -

sections. For the similtaneous procéssing of two data sectioﬁs,
sections 1 end 2, for exemple, may be combined to form the real and

xmaglnary part ‘of the 1nput to the FFT processor Similarly sections

3 and 4, (g+1) and (g+2} may be processed 51multaneously Note. that

"when the sectlons are processed in the row dlrectlon H .2, in the sequence

1-2-3-..., a set of (L—l) rows and (L-1) colums overlaps adjacent

sections, and hence must be saved. Assuming that the same data

memory is used to store the original and the filtered matrix, a
separate memory buffer to save part of the input data is reguired.

The WEWOTY, contalnlng the input matrmx is divided into pgq

N
(M I+l

section contains (M-L+l) columns. The save memory for the_%nput data

sections where q is an even 1nteger with 4 2)} and each

consists of three buffers SV, SV, and SV3 of size {(M-T+1}x(L-1)+q/2},

{(M-L+1)x(1-9"q/2} and (Mx(L-1)), respectively. Fig. 5.2a -shows

~—.

memory sections containing different sections of the matrix of Fig.
5.1. The save memory buffers SVi and SV2 are divided into q/2 sections,
each of size {(M-I#+1)x(L1-1)}, and buffef38¥3 consists of two sections

cs

1 and 082 as shown in Fig. 5.2b.

With the above provision of the data and the save memory buffers,
a 2-D convolver organization, using the FFT processor organization of
Fig. h.6a, is given in Fig. 5.3. At the start of the convolution

process, ' the buffers SVl, SV2 and SV3 of the save—memory Ss are

)
-1
¥

L %/V%W//

]

I’/

-/
N 8]
5

/7)%
7

///_

1+b

ﬁ/V/

N

%V/

/

// /// S
NN

//_// SN
NN

ﬁ ,g:
4/1//////@%///////

T ‘

-

—~
e— =
=

BlE T
0
=

HHHHHH

Ki\ TLIANGD
TVILINT

123

1 2 3 Q)
q+l q+2 q+3 2q
(p-1)a+l|(p-1)q+2 |(p-1)q+3] P q
Fig. 5.2(a)

INPUT DATA MEMORY SECTIONS

TM-L+l

> -l ey

X = M-I+l _a - —
. t :] L_l
I-1- Rsu RS, RS, R821 cs,
$| ' ' [
RS, 5 RS, RS, RS,,
1 !
RSlB Rsl3 RS, 5 3323 s
: 1
Q.(1
5 (L-1) Mol
N 1
RS g RS1q : Rseg 352 5—
2 2 2 » l
v
N S L-1 e 3 L-1 &
vy 5V, SVq

Fig. 5.2(b) SAVE MEMORY SECTIONS

12k

‘initialized_to zero and the process begins ﬁy transferring deta from
save-memory to the FFT processbr. The M camplex data ﬁoinﬁs-to the

FFT processor are formed by asccessing the first row of CS., RS RS. !

11° "r11

t in B9 . 3 L
RSal, and‘ﬁsal as shown in F}g. 5.be.” The data in RSEl is also saveé

- in.ng. In a similar fashion the next set of M-points, corresponding .
to the 2nd r&w, are accessed from the ;ave—stdre énd transferred to.
the FFT.processor; The{:bqve prdcess is repeated (L-1) times which‘
corresponds‘to transferring the first (L-1) fows of the data sections
1 and 2 (shown:as initial conditions in Fig. 5.1},

_ After the abéve data transfers have been completed, we start
transferring data from the CS, section of SV, end data section 1 and
2 by formiﬁg the real and imaginary parts of the inﬁut to the FFT
prooessor as shown in Fig. 5.4b. We also save the last (L-l)‘
points correspoﬁding to the partitionQC of the data séction #2 in
CS;. This process of data transfer is repeated for all the (M-L+1)
rows in data ;eétions 1 and 2, but for the last (I-1) rows the datas,

corresponding to lR’ 1 ER and ERC partitions of Fig. 5.1, is also

RC’

> t
saved in Rsll’ RSll » o1 o1

Fig. 5.5 shows the formation of a block of size MxM for input to the

RS,.. and RS,.' sections of the save meﬁory.

FFT processor and the partitions of this block correspond to the’
various sections of the data and the save memory.
At the end of hhe above transrfers, the FFT processor starts

computing the DFT and the inverse DFT of the (MxM) block just transferred.

\

While the FFT processor is performing the convolution, the next block

SAVE
MEMORY

TIDTER
COEFFICIENTS
Fo

—

v
2-D
RADIX-2
FFT
PROCESSOR

125

Fig. 5.3 A 2-D RADIX-2 CONVOLVER ORGANIZATION

-

e M —

6, TEs, ES',

T L=l M-2(DL-1) boL-1

BTy RSy B

" L-l M=2(1-1) = L-1
(a)

ME— Section #1 -
oS 1 | a
"ol Me2(L-1) 0 Ll

g— Section #2 -4
Sl 2 2y
L1 Me2(L-l) 0 L1

(b)

Rea_l Part

Tmag. Part

Complex
Input
To

Processor

Complex
Input to.
FFT

Processor

Fig. 5.4 FORMATION OF COMPLEX INPUT TO THE FFfIPRQCESSOR
FOR SIMULTANEOUS PROCESSING OF TWO DATA SECTICNS

126

* QHOILOES AYOWAH AAVS AL WV ' (T+7) ANV ¥ SHOILIAS VILVa L (1)

2 NV T NOLLOAS vIY¥a FHL (®) (HOM4 GASTAIOV VIVA DNISH N3O (HXH} Vv 40 NOLLVHHO4 676 *Byd

80

80

T v
{ . |
Zoy]l e | @ %un] Yo
|-
1 1
T : T y
) 1
Tou) *Ton [} % “ U
1 1
e vt —i [
_ i
, i
Hm.m,__ By [} Mz Y2 |t
1
1. | ﬂﬂ
= 11 e v
“ o
Wony Tsu g | M ! Uy -1
i
1 | K
e~ -n —

Sa

82

-

M ay)

A 147)

147) 2gy

od

(1}

()

T¥I-H

H ol
PN (R P o,
(1+0)#
oaa*uv uo 1oy 25
1]

L] "
W) 20 (T 2 13T oy
IUVd " OVHI
an,, i, ou,
o
92 | wrqo0s Iy
1]
T2 sy Loy o
= H >

;|

) o n
" o
%5 uo7390g
: Ll b
LAeRY o g0
LiVd "Tvad
b e wwi-h —3 -
o i
“ M iy
w Tso
I un gy
T+1-H -
hLI¥- gy %an
]
1
> 1 ke

T+#1-H

i

of data corresponding to data sections 3 and 4, as shown in Fig. h.Sﬁ
is formed. Fig. 5.6 shows the timing diegram and buffer allocation
for coﬁﬁolution of succgssive data sections. 'As shown .in Fig. 5.6,
input, output, and filtering operations are performed concurrently.
.At the completion of a filtering opg}ationj_the FT? proceésof starfs
proceésing a new block of deta and the filtered dasta corresponding .
to the previous élock_becomes available at the output of the FFT
précessor. This daéa is written back into theé corresponding sections.
Only the output corresponding to the last (M-L+l) rows and colums
is stored, since the first (L-1)} réws and (L-1) columné of the
filtered output correspond to.fhe overlapped portion of the data
sectiens. | \ |

The above process.of filtering fwo data sections at a time is
repeated g¢/2 timés and the §§erlappéd area between the data sections
is"saved in the save-memory. Since the saved portion of the-data
,sections in the first row corresponds to the ini%ial'conditions for the
2nd row of deta sectionsj’the‘congoluﬁion process for the lst row of
q sections is repeated for all the p rows of q sections. The only

requirement is that the save-memory sections CS, and 082 mast be

1
re-initialized té zero at the start of a new row of g sections. At
the end of the_ptﬁ row, the filtered data is.in the date memory and
this process may be'repeated for the next input matrix.

F;om Fig. 5.6 it is clear that, to keep the FFT processor busy :

all the time, we must be able to read and write two successive sections

of the input matrix, simwltaneocusly. This cen be achieved if the

. 128

. JENOLLOAS VINA HAISSIDONS DHISSE00dd
YOJd WVHOVICQ HNIWIL ANV NOILVOOTIV HIIING S,H0SSd0Md LJdd 9°6 .mﬁ.m

2dnd-T1dnd 2nd—~Tdnd T4
F — 4 + ~
gndang paIa}ild I3FsuBlyj 14d1 Idd \« NooTd (WPW) UB WIog
€and | Edna-2dnd © Edmd-2dnd CANd
-|| 4 “ “ “
nding patalTrd I8JsuBlj, JJar Lid HOOTH (WPGH) UB WLIoq

cJna—TadNd cdng-tand T404d
1 3 L s ed,
¥ $ 4

anding paxsjitd JA0Fsuviy LA T &dd WOTd (WXW) ue wrod

individual sections of Fig.‘S.Ea are stored in sepafﬁte memories.” Fér
large matrices the number of sectiﬁns, p-é, mey be large, resu;ting in a
large number of sep;rate memories. In meny situations the input
matrix is stored in a large random accéss memory with a single ;ead/
wfite‘port. In‘this‘case either the memory sccess time must be i/hth
of.the input/output tiﬁe of the FFT pfocessor or the memory must have
fourlread/write ports so that four data words ma} be accessed/stored
simultaneously. Since. the cost of & four port memogy or' memory with
an. access time of 1/4th of the input/ouﬁ‘time of the FFT processor may
be wery high, we-will find another way of storing the sections of

the input matrix. In the new technique, we store tﬁe input matrix
into two seﬁﬁrate m&méries where each. word of a memdry stores two
data points of the input matrix. To store the input matrix we pack
data points from the two successive sections of the input matrix and

store the packed sectibus into the two memories as follows:

Memory 1 Memory 2
(1,2),(3,4),(9,10),(11,12) G,6),(7,8),(23,14},(15,16)
(17,18),(19;20} ;0 rvnnen. . (21,22),(23,24), 00 eeeinnns

For example, sections (1,2),(3,4),(9,10)},... are packed and stored in
Memory 1 and sections (5,6},(7,8),(13,1k),... are stored in Memory 2.
From Fig. 5.6 we note that éhe two memories are never read and writtén
sirmultaneously. Thus, the provision of two memories with an access
time equal to the input/outpuf time of the FFT proceésor seems to be

a cost effective solution.

130

The convolution process also feéuires the multipiication of
the DFT of an (MxM) block by the DFT of the filter impulse-response
stored in Fc. 'Sinée thére are no multipliéations by the
twiddle factors in the last FIFT sfage, thg mulﬁiplicatiqn '¢f the
two DFTs may be performed in the last FFT stage. An additional set
QflROMs to perform a complex-multiplication is required sinc;_there'
are only (re-l) mu;tipliérs_ in the 2-D radix-r Butterfly unit. Since
Athe twiddle factoré for the DFT and inverse DFT are never required
simultanecusly, we can store these twiddle factors in a single set
of ROM's.. The ROM's storing the twiddle factors and %‘.he ROM's storing.
the filter coefficients, may be multiplexed at the input to the
complex multipliers.

From section h.2.4, we know that for a transform size of
(MxM), & 2-D radix-2 FFT processor takes T x I;%—e-xloggM ns where T
is the inverse of the pipeline throughput rate of the FFT processor. -
Since pq/2 convolution operations are required for an input matrix
size of (NxN), where a convolution operation specifies an (MxM)-
point DFT angd inversé DFT cperations, the total time required to filter

a matrix is given by
T:p-q_-h—‘-T'lOgEMHS (S-h)

For example, for an input matrix size of (256x256) and impulse-response
size of (17x17), a (6Lx64}-point 2-D radik-2 processor, with T = 70 nus,
will take about 15.4 ms to filter the input matriﬁgl This giyes a

throughput rate of 6k matrices/sec. To achieve this processing speed

131

Jit is necessary that %he FFT processor's pipeliné must be kept full a@d
for tHis the input data and save'meﬁory_aécess time shou}d be lesg

" than or eqﬁal to 210 né. Also,;-T =‘70 ns assumes that the internal
buffers EﬁFFl; BUFF2 and BUFF3 of tﬁe FFT processor also have an

access time of T0 ns.

5.3 2-D CONVOLUTION USING 1-D FFT PROCESSOR

In Chapter 4 we showed thet a 2;D DFT can elso be computed by
taking the 1-D DFT of the rows and then the colums of the input
matrix. The 1-D DFT of the rows and column can be computedlby a |
special purpose FTT‘procéssor such as the one discussed iﬁ Chapter
3. Thus, a 2-D convolution can also be implemented by usihg thé
above technique and the overlsp-save method discussed earlier., In
this section we investigate the implemenfation of a 2-D convolution
using the 1-D FFT processor of Chapter 3. The motivation behind this
investigation is to determine the cost effectiveness of the previously

.)

discussed processor with the more conventional reslization. In order
to oﬁtain an accurate assessment, the following design is discussed
in detail. |

The organization of a 2-D convolver using the 1-D FFT processor

of Fig. 3.7 and the memories storing the input date and the save

memory of the previous section is shown in Fig. 5.7. To store the

3

partial result of the 2-D DFT and the IDFT, another memory, TS

of capacity (MxM) complex words is also required. Since a 2-D

transform of any section is petrformed by taking the transform of all

132

HOSSADOMd Ldd a-T AHL DNISN NOILVZINVOUO HIATOANOD d-¢ v LG Bl

- FHod BHOM
SINAIDTJAROD | F Mm
o i ‘e XHOKIH
MEITL X0 40
Qh‘ AAVS
. 40SSADOUd
, : - ddd) VIYQZ INdNI
KHOWIH
a-t e —f XMW
vIva
(W) . ‘ .

= S5, fuoran , ;

133

the rows 'firs’t;, and -tllle.n the columns, the result of a row or columm
trensform is alwayé stored in Ts'

At the start qf‘é convolution,data, to the 1-D FFT processar,
is formed as complex wcfds, as shown in FigJ‘S.E.‘ After a row of the
(MxM) block of Fig. 5.5 has been transferred, the FFT pfocessor starts
computing the DFT of this‘row. 'While'the FFT processor is compuiing
the DFT of the 1st row, the 2nd row of the (MxM) block is fed to the
FFT processor. At the completion of the 2nd row transfer, the FFT
processor completes the bFT of the lst row and starts computing the
DFT of the 2ng r&w. Also the result of fhe 1st transform ié
simultaneouélj outputted by the processor ana is stofed in the 1lst
row of the complex store. lThus the FFT‘processof can be opersted
continucusly with the input; output and DFT operation being performed
concurrently, as shown in Fig. 3.6. The above process is repeated
for a complete block of (MxM)-points. The (MxM) blocks are always
for;ed accofding to Fig. 5.9 ﬁnd the result of the row transforms is
stored in the memory, Ts'

At the end of the row transforms of & block, the processor is
ready to perform the column transforms of the result in TS. The
above process for the row transforms is repeated for the column
transforms, a column at a time, Note that the date from the next
colum’ of Ts is read and the result of the previoﬁs colun transform
.is written_simultapeously, thué reqﬁiring that Ts have either two ports

or an access time of one half the input/output time of the 1-D FFT

f - \

processor. _ - \\‘ﬁ\\
. \

N

134

The convolution process also requires multiplication of the -columm
transforms by the filtér coeffidients stored in,FC.: This multiplication
cen be done in the last stage of the colum transform, ‘similer to the
1-D conYPlution discgséed in Chapter 3. Thus, at fhe end of the colum
transforms, the pfbduct ofhthg-ﬁFTé of a block ana the filter impulse-
response will be availablekin TS.’ In a simii:; fashion the inverse
DFT of the coiumns #nd the réﬁs‘may_be perfofmed. Aftef the eonvolution
of a block is completed we can store the filtéred 6utput back into the
data mémory. Similar to the 2-D convolution of the previous section
we repeat the above process for the other sections of Ehe input matrix.

From equation (3.5) we see that a 1-D radix-r FFT processor requires
(T - g-- longl ns to perform an M-point transform, whererT is the
inverse of the pipeline throughput rate of tge 1-D FFT processor. Hepce
to compute.a_Q-D FFT and an inverse FFT of an (MxM) block, it will take

(L. 7- %E-- 1ong)- ns. Thus, for p.q/2 blocks the total time required

is given by 7 S

-

T=2-pq.

HI%

* T log M ns ' (5.5)

Since the complexity of & 1-D radix-4 Butterfly unit is same as that
of 2-D radix-2 Butterfly unit, we choose a radix-4 1-D FFT processor
implementation. Thus for r=L,{5.5) can be written as

2
T=p-q-2ﬂ—-T-lOgths (5-6)

[

Comparing equations (5.6) and (5.4) we see that the time required to

compute a convolution is the same for an (MxM}-point 2-D radix—2 and

F

135

an' M-point 1-D radix-4 FFT processor. Thus, taking the example
of the previdus section, a 6Lk —point l—ﬁ_radix—h FFTlproceésor will

take 15.4 ms. To achievé.this‘fate tﬁe 1-D processor's pipeline

must be-kept full, which requires that the access time of data -

memories storing the input matrix, ﬁnd the memory3 ?S; ust-be gnn“'
less than or equal to 52.5 ns and T, mst be dual port. gari},
these memory.requirements repreafnthgvhajo;'cost factor in the
processor design and thus place thiéil—Dapﬁrodbh at a much higher
cost than the previously discussed 2-D design.

The consﬁraint of a small memory access time on the data memories

and the memory T_ msy be relaxed by the prevision of 3 memory units;

‘ p o
Ts.l’ TsE’ _-a.nd TS3, as shown in Fig. 5.8. \\In this organization of the

2-D convolver, each of the meﬁories, Tsl’ T52 and TSS has g storagé '

ca?acity of (MxM) complex words. These memqries are used'to:

4

(a) receive input data blocks of size (MxM) from the data memory Dg
storing the input matrix; (b} supply and receive data from the i-D
FFT processor and (c) output the filtered block.. TFig. 5.9 shows the

allocation of the memories T ., T , and T . for the continuous
3 v sl s2 S3

operation of the 1-D FFT processor. From Fig. 5.9 it is clear that

T and TS be dual port to enable simultaneocus

th? memories Tsl’ oD

3

read and write operations, but in this case the requirement of data

memories access time is relaxed to 210 ns as campared to Sz.é'ns for

the previcus case. The requirement of 52.5 ns access time for the

memories T_,, T_, and TS3 remain the ssme. In comparison with the

1? “s2

- 136

*40SSAO0Md Idd Q-T V 40 SHOILVMIIO _
1 SETHOMAW 40 NOTIVOOTIV 6°6 "BTd

,

SNONNITNOD o4 57 any &p ¢
B ..Hma dmaumma. mwauame 5,
i P '] '] 4
- g4 woord andng/gyndur Jad1 ' Lad ' €4 Mo0Td andqng/qndut

€S, mmaumma o5, ES, €8,
b - }- - } } —f
2f Wootg andinp/andur LG Lda 24 ¥oot1d nding/ndug
18 18
r I aumma gs; 18, :
- i t + t — 4
'~ T# ootd gnding/gndug Lad1 B (4 T# ootd ndang/gndug

‘€8

I aNv

<@y «T8; of TuonEn TVIMALXT € HLIM

HOSSI00Hd B&h.ﬂlﬂ:UZHmz NOILVZINVOHO HIATOANOD -2 V g§°6 "d1d

H0SSID0Ud
Lad
a-1

HoLNd

~1u181a

.8

XHOWAN
AAYS

Sq

SATHOWIW

YLova

137

v

2-D FFT processor, the access time reqplrement for the internal
buffers of the 2-D processor 15 70 ns.- In general, the memory :
access time of the memories T T52’ and T33 deﬁends oﬁ the rélaticn
E-' loghM. For this time to be.equal'to T = Td ns, M must be
greater than or equal to 256. . ‘ _‘ -

Comparlng the two organmzatlons, Fig. 5.3 and Fig. 5.8, of ‘the
*2-D convolver we see that for the same c?st to performance raﬁio, the
cost of thé previously described ?—D radix-2 FFT processor must be

equal to the cost of the memories T T . and the 1-D FFT *°

s1’ 52’ s3

processor!h From Fig. 3.7 and the discussion in section 4.2.h we see
that, except for.the sizes of tﬁe sub~-blocks and subﬁbuffers; the
complexity of the l—D'fadix-h_and 2-D radix-2 FFT ﬁrocessors'is the
same. Since the size of the memories, T

T T is the same ‘as
53

sl® “s2°
that of the internal buffers, BUFL, BUF2, BUF3,.we see that the 2-D
convolver implemeﬁtatiqn, using a 2-D radix-2 FFT processor, is more
cost effective than the implementat}on with a 1-D radix-4 FFT processor
because the internsl buffer étofage for the 1-D FFT brocessor is an -‘
extra requirement.

From the ahove'diécussion ve may conclude that‘the inte:nal
memory architecture of the 2-D radix—2 FFT processor of Fig. 4.6a is
equivalent to external memories Tsi’ TsE and TS3 of Fig. 5.8 and the.
internal buffers of the 1-D FFT processor of Fig. 3.5a. ~ The 2-D

FFT processor implementation is even more cost effective for high

radices. For example, a 2-D radix-% Butterfly unit requires 15
.I' .

LI . 138

- multipliers as compared to 2§-nmltipliers'required by an equivaient

1-D radix-16 Butterfly unit.

5.4 2-D CONVOLUTION USING NTTs

The 2-D coh%olver;organizatibns of the last two sections may be
implemented using an NTT defined ovef:complex residue rings [25]. In
the NTT implementatiﬁn the séaling hardware is not required, but =
setlof‘moduli must be selected to provide énough dynamic range to avoid
,any overflow during the convolution operation. Also the set of moduli
‘{mi} should ﬂg chosen in such a way that the transform length, M,
divides each M;, where M, depepds upon the m, [25], ana M.% .

: Becﬁuse of the exact nature of the computation, NTTs eliminate any
round-off error due to integer répfesentation of the twiddle factors:
‘and scaliné opefations, that are inherent in the RNS-based implementation .
of the DFT; In the computétiog of the DFT it is known that the error
in the output Fourier coefficients can be reduced by increasing the
dynamic range. Since, in the NTT implementation, the d&namic range must
be large enough'to avoid any overflow and it is a function of both
the magnitude of the input data and the impulse response, we must scale
down the magnitgde of the input data and the.filter impulse response to
get a viable dynamic range. Although scaling of the input data and
filter impulse would reduce the dynamic range re&uirement, it will
result in a higher error in the output. Thus, the dynamie range, ./

required for the implementation of both the NTT and the DFT, depends

upon the desired error in the output. A thorough investigation of the

139

—
- dynami# range requirements for‘DFT'and~HTT pohvolver iﬁplementaﬁion,
with similar error proﬁerties, is beyond“the‘sgope of this tﬁesis.
For an initial comparison, however, we may assume that for the.

same requiifment'of the dynamic range for the implemenﬁation of both
the DFT and the NTT, an acceptable errorin tl_;e ou{:put is obtained.
If this is true, we note that the NTT implementation does not require
any scaling operations and_hence; the resi@ues cerresponding to all
the moduli must be stored Lm;o the buffers ﬁUFl, BUF2 and BUF3 of
‘convolver 6rganization of Fié. 5.3. ‘This douﬁlesrthé buffér.storage
requirement-fof the implementation of the NTT. Mso, for a
reasonable transform length,-M, the moduli required for the implementation
of the NTT turn out to be greater than 64, and hence a sub-modular
approach using ROM arrays [47] or s combination of adder and ROM
structures [48] must be used to impieﬁent the Butterfly unit.

o In [25], Baraniecks and Jullien have shown that a transform
length of 128 and a dynamic range of over 2k bifs‘may pelqbtained by
choosing a set of primes {191, 193, hhg} as moduli. 4£ dynamic range
of over 2k tits may also be obtained by'ceoosing s set {32, 31, 29, 25, 23}
as moduli for the FI'T implementation. Assuming tha; an acceptable error
is obtained by choosing a scale factor as ﬁhe product of two moduli,
a preliminary analysis of the hardware.requiremént shows that a ROM array
implementation of both the 2-D radix-2 FFT and NTT Butterfly units
reguire approximately the same number of ROM packages. Since, the
package requirement for the buffer storage is greéter for the NTT

Implementation, the FFT implementation of the convolution oyé;étion

b

140 '

[

seems to be more cost effective than the NTT imﬁlemehtation.

The 2-D qpproach.presented'in this work offers ;pecial advantages
in‘thé impleﬁ;ntatign of NTTs, In siﬁuations'Whe¥e the chosen set)
of moduli {mi} allows & maximum transform length, M, which is a power
of 2 but noéla power of h,‘a 2-D'radix—2 implementation offers the cost
to perfof%ance ratio of a’l-D fadix4h implementation ﬁith M= 29‘
oniy. Thus we can coﬁclude that if an NTT implemeﬁtation is chosen

to compute convolution of 2-D sequences, a 2-D NTT processor will be a

better choice than & 1-D NTT processor.

5.5 GSUMMARY
A novel.memory architecture for a special purpose proceséor to
Iperform 2-D convolutions in resl-time has been presented. It has been
shown that'gith the provisidn of a épecial memory organization,‘the
2-D radix-2 FFT processor presented in the last Chapter can be used
to perfb;m real-time filtering operations by the ovérlap—save technique,
of sect%oned convolutions. We also demonstrated that the throughput
rate obtainable from the proposed convolver architecture is sufficient
to process images of size (256x256) at video rates.
To determine the cost gffectiveness_éf the é;D.ébnvolver.using a
2=D radix-2 FFT processor, a ﬁofe conventionasl realization Qfﬁthe 2-D
convolver using 1-D radix-li FFT processor, described in éﬁgﬁtér 3, has
been presented. It has been demonstrated that, for the same throughput

rate requirement, a 2-D convolver implementation using a 2-D radix-2

FFT processor architecture is more cost effective than the implementation

1l

wi%h g 1-D radix-i FFT processor of equivalent‘cdmplexity.w We showed
. : o : -

that the proposed 2-D convolver architecture canjalso'be used to

computé convolutions via an NTT dgfiqed gver co%plex residue rings.

We have made an initisl comparison betweeﬁ ﬁhe'é?rdware rgguirements

:?”¥5#:£h; Ehplemenphtipp of a E-D.convolvef using fhe 2-D redix-2 FFT

and NTT processors. With the assuﬁpﬁion of equ%l dynamic range

requirements for both the.FFT and'NIT im@}éﬁeﬁfaé;on, it is argued

that thé T-implementatiéh, is'mgre cost effecti;e than the

implemeﬁgh ion using s NTIT ﬁrocessor. But to establish these results

8 furthar‘inﬁestigation of the dynamic range requiremenﬁs should be

done, and is offered as an avenue for future work.

. a
3
Yo 3

CHAPTER 6

% HARDWARE REQUIREMENT AND

S

SIMULATION OF THE FFT PROCESSOR DESIGNS

6.1 TINTRODUCTION

In the previous chapters we presented the architectures of RNS—

based 1-D and 2-D FFT processors and convolvers. In the discussion -

- of these architectures we found that, for -a butterfly operation, the
.data from the selected buffey.is always accessed in‘Sequential order.
Mso, for real-time processing of the data, the input/output dats is
stored/accessed in sequenﬁial memory locatidns.‘ Thus the internal.
buffers of both the 1-D -and 2-D FFT Processors can be built usi
serial access memory packages which also leads to simplification of
the memory address géneration logic and the processor tontrol functions.
In many situations, a random-access memory organization may be more
suitable because of the commerically available higher density packages
with faster:access time. The use of higher density random-access
instead of serial-access memory will result in smaller hafdware
requirement and hence may prove to be more cost-effective than the
orgaenization with serial—accegs memories. Thus, depending upon the
cost. and the performance constraints, one may consider both memory

organizations and the trade off involved. In this section we discuss

1k2

o - T 143
the use of both the serial- and randam-access memories and evaluate

the total package requirement for both the 1-D and 2—DJFFT Processors.

6.2 HARDWARE REQUIREMENTS

Before‘evaluating the hardware réqgiremed%s for fhe RNS-based
FFT proceésors, we must choose a'dynamic‘range, M, which willgsatisfy
the constraints imposed by the apPlication for which fhé FFT processor
~is to be used. For a large cla%s of signai processing applications
a;&&pamic range of 28 bits is sufficient. This dynamic range may be
obtained by choosing the following moduli set,b{32,31,29,27,25,23}
vhere N ; 6. Also a set of s = 3 moduli may be chosen as the écaling
moduli. The number of éommercially available packdges needed for the
implementation of a 1-D radix-4 2024-point FFT prbcessor/convolver as

L4
shown in Fig. 3.7, is given in Table 6.1.

Table 6.1 shows the package requirement for the implementations
using both the serial-asccess (SAM) and the random access memories
(RAM), From Table 6.1 we note that, althougﬁ’ghéxuse of high density
RAM package reduces the numﬁer of memory packages it results in an
increase in fhe package requirement for the multiplexers. Thus, the
total number of packages required for the implementation using RAM
is more than that required by the implementation using serial-access
memory. M so, with the use of RAM we are assuming that the memory
has two porﬁs so that a simultaneous read and write operation may be
c

performed. The above analysis is valid only for the implementation

of a 1024-point FFT processor. If an FFT processor is required to

.

1hh

wmﬁH\OOAH 71L0T/900T TVLOL . I3ATOAUO) /L
- SHOY
- S3USTOTIIa
8%gct 3 8xget 2t Wod =0) I37TTd
JISATOAUO)
JLdd sHoY
gx(215/952) e gx(21s/952e) fic nod 103083 ITPPTAL
S11d @ Bh 5379 g 96 " I0INq IS T]
831d @ getr - 837d g 8) " X gndang
5a131J0g T8120
8914 @ atE E31d.Q gg8e SY8I5-TaL xny ndul
. o i . Aiousuw ss9208
gxX49 26T SxN9 892 wopuBy/ T8 TI55 _ saapyug
. gfvaay caxy
gxALT 89t 87T 891 Woy 2g98g/FurTeog
UOTINTOAUO) /T4
gXAT © ow2/qoz g%t one/oe Wod 3TuUn ATII933ng
9Z1g 5938108d JO # 9Z 1S gadeoed JO 4
3dvyoBg 1TUN SIBADIBH

Liomsy ssgoooe-woOpUBY
U314 uoTjejusmeTdmy

Liowsy] 8s2008-TATISG
U3t uorjejuswsTduy

-420T #-XIGvd a-T1 vV 40 zOHadammENAmSH JHL HOJd LNAEIINGTH TOVIOVd

. IINQON DNITYOS
S HIIA SNM T'INGOW 9 = N V ¥OJ MAATOAMOD/¥OSSIOOUd Ldd LNTOd

T°9 9Tq8L

145

implement the DFT of a larger array, we must evaluate both the
implementations again since high.density SAM packages may not be
commefically ayailable. ihis is shown for the iﬁplementation of a
2-D FFT pYocessor. | |

Table 6.2 shows the padkage.requirement for the implementation
of a {6L4x6h)-point 2-D radix-2 FFT processor. F}om Table 6.2 we
_ see that the package requlrement for the implementation u51ng SAM
is much larger than that of the implementation using RAM due %o the
non-availability of hlgh—den51ty SAM packages having an access time
which is withinAtﬁe constraints imposed by the processor. If the -
requlred size of SAM package were commerlcally available, or if it
could have been custom designed, then the total number of packages
requirgd through the use of SAM would have been less in compariscon
with the RAM implementation. Also in the above analysis we have
not considered the hardware required for the implemeﬁtation of the
processor control functions, which must be taken into aécount for both
the implementations. Since the SAM implementation resulis in g
simplified control, a further snalysis of the cost and performancé
of the two implementations is required.

In the above analysis, we presented;the package requirement fo£
the implementation of the 1-D and 2-D FFT processors/convolveré which
is based on the assumption of a dynamic range requirement of 28 bits.
Since tﬁe dynamic range requirement for a particular application

»

depends upon the desired output error in the Fourier coefficients [40],

a lower dynamic renge, and hence a lower cost, can be achieved if

"

146

g911/00TT ithoz/9L6T TVI0L JOATOAO]) [l
SHOY
g4UaT0TJI2
gxels et wxmﬁ . ¢t Wod -0D JI991Td
. : SHOY
T gxgel e grpet ‘he WO’ J090R] ITPPTIH
8114 @ 84 89Td § 26T 0 J1040q 113814
374 @ get s31d @ g " xny 3ndyng -
. “+ | saszyng Te300
s31d @ 9EE S3474 9 922 29898-T], XnW andug
‘y\‘ Kaiowsy] 882009
mﬁwmm 26T [$a;] AN wopusy /T8TI83 sdajjng
. , > sfAvaxy *3xq
gAT- g9t gxaIL 89T Wou 9s®g /FUTTROS
: IBATOAUQD /Ll
g*AT owe/woe gL oney yoe WOH TUn ATFIa33ng
mNHm gsadeqoBd IO # 2219 s9dwioEd JO #
2d8)q08d 1T SIBAPJIEH

AIomsy] 88300B-UOPURY
U3TH uoTyejuswaTduy

RIouay] 882008~TETILS3
Yy3Ih uoTjBjuswaTdul

. TINGOH DHITVOS
A S HLIM SNY ITNAOW 9 = H-V HOJd mmbao>:ooxmommmoomm Ldd LNIOd
-(/9%49) 2-XIQVH -2 V 40 NOLIVINAWATIWI FHL HO0d INTVEYINGEY JoViIVd 279

ITqey,

‘147

the intended applicatibn can folerate mére error in'thefoutput.f
From the approximete hardware rquirement of the 1-D éﬁd 2-D
FFT processors we can conclude that thé RNS-based serial sequential

-

FFT processors are more economically viable than the multiprocessor

architectufe, organization using‘a large(§cale computer and the multi-
‘butterflg FFT processor architectures [20],}?1],[h6],‘for real-time
_processing of l—D‘and fwo-dimensional data; Because of the memory
'intensive'naiure of these FFT processors, the cost to performance

ratio of these processors is expected to improve with the advancement

in memory téchnology.

6.3 SIMULATION OF THE FFT PROCESSOR DESIGNS

En ordgr to .verify the FFT algorifhms and their associated
proéessor arcpiﬁectures proposed in this thesis, the 1-D and 2-D
FFT processors/convolvers described in Chapter 3, 4 and 5 have been -
simulated on a Déta General NOVA-840 genersl purpose computerL

For the wverification of the'l-D 0I00 FFT algorithm, the memory
architecture and the Butterfly unit of the radix-4 FFT frocessor
of Fig. 2.2 has been implemented in software using FORTRAN with
single'precisioﬂ floating point arithmetic. The output of the 0IQ0
algoritlm was compared with that of the standard decimation-in-time
(DIT) FFT algorithm for a numberrof input sequences and the difference
between the two outputs was found to be negligible. For example,
Fig. 6.1(a) shows a section of the input speech signal to the two

implementations. Figs. 6.1(b}, 6.1(c) and 6.1(d) show the outputs

122
- 100
780

| 557

f L33

112
".110

=332

-.777

- =,100

-.122
.425

.87

. <348

.310.

271
.233

.194

117

.786

400

.148

Fig.

E 4

148

E1 W
E1l

E1 J

E1 4

E1l i

> i

E1

EO

EO

E-1

o +31E=02

.00E /00

6

«20E 04

(a) Input speech signal

.10E-01

.15E-01

(a)

o SO e oy

+40E 04

4

S
.60E 04

(b)

s

(b) Output of the 0I00 algorithm

1]

.20E-01

- |

J26E-01

AL

.80E 04

-
-10E 05

425 E 1.
.387 E 1
.348 E 1|

J10E1

_ }
<271 E'lJi

233 E 1

. -

«194 EI 1.

2156 B 1L
A17E 1
.786 E 04
400 E 0 |

148 E-1

.00 E 00

.146 E-5_

. 09&'6 E""ﬁ

435 E=-6 |

-.745 E-7 .

-.585. E-6

-.110 E-5
-.161 E-5
-.212 E-5
-‘263 E-5 -

 =.314 E-5 ‘

-=«365 E=5 |

=416 E=5'

.20E 04

b o A

4,

149

".4OE'04 .60E 04 . .80E 04
(e)

~ .10E 05

+00E 00

.20E 04-

+40E 04 .60E

(d)

Fig. 6.1 (e) Qutput of the standard DIT FFT algorithm

\/\

.80E 04

(d) Error between the outputs generated by the 0I00 and DIT
' algorithms : '

"150

-

'generated by the 0IO0 an& DIT FFT algorithms and the error between
them, respect:.vely. F‘rom Fig, 6.1(4) we note thet. the maximm
error between the tw0~outputs is less than + 10 5 '?

For the simulation of the RNS-based 1-D FFT processor of Fig.
3. T, a smmulatlon program for a 1024k-—point radlx-h FFT processor
has been‘wrltten u51ng FORTRAN and assembly language. The pipelined
processor archltecture of Fig. 3 T was simulated u51ng a quodull
RNS with 3 scallng modull and the values of the 1nteger conversion
factor, scale-factor and the dynamic range were found from the
procedure given 1n [ko0]. The ;ook—up tables specified by the
butterfly architecture of Fig._3.2{hnd scaling algorithm of Fig. 3.3
T were genéfated and stgred in a disc file. For the implementations
of theipiocessﬁr'slpipeline, the input and output.of each stage‘of‘
the piiaeliﬁe was buffered. The buffers BUFL, BUF2 and BUF3 of the
FFT- processor were implemented as shift registers of sizezloqh
words wher€ each buffer consisted of 16 first-in first-out (FIFO)
serial-access memories. . The processor control functions required
to control the Input and Output MUX's, Distributor, data flow in the
FIFO's and fhe pipeiine operations were implemented using integer,
‘logical and bit variables. The input and output of the processor was
'agsumed to weside in the disc files. The simulation progfgm WaS
orgahized as a big loop where each iteration of the loop performed
all the data movement and control functions specified ﬁy the FFT

procéssor architecture durinérone clock period.

- Various types of sinusoidal,.rendom and speech signals were

151

used as test 1nputs to the FFT processor simulator. Fof verification
of the result the 51mulator output. was compared with the outputof the _
~1-D 0IQ0 FFT algorlthm For all the test 1nputs the comparison between
the two outputs showed that the output of the 51mulator was within the
specified error limits. For example Flg 6.2(a) shows a\section of the

Input speech 51gn&l to the 51mulator and O0I00 FFT algorlthm and Figs.
6.2(v), 6.2(c), and 6.2(d) show the corresponding output of the simulator,
0I00 FFT algorlthm.and the error between the two outputs, respectlvely.
The RMS error between the two outputs was found to be 0. 832% which is
1ess than the spec1f1ed 1% limit on the output error.

\l For the verification of the 2-D FFT algorlthm of Chepter L and the
'2-D convolver architecture of Chapter 5, & 2-D radix-2 (32x32)-point FFT
;algofithm vas implemented in FORTRAN. Since the architectures of the 1-D
and 2-)) FFT processors are almost.identical, no effort was mede to simulate
the,real—time architecture'of the 2-D FfT.processor of Fig. 4.6 using the
chosen RNS. Instead, the two-buffer non real-time organization of Fig; 4.3
was ioplemented ueing floating—point arithmetic The memory organization
of the convolver of Flg 5.2 was 1mplemented by using separate areas of

the computer memory as Data and Save Memory. To verify the convolution
algorithm using the overlap sdve method of sectioned convolution, e&s
described in Chapter 5, a (lTxlT) 1mpulse-response of a Laplacian fllter was
chosen as the test filter. Images of size (128x128) were convolved with
the impulse-response of the test filter using the (32x32)-point 2-D
radix-2 F¥T algorithm_and the Data and Seve memory organization of‘

Fig. 5.2, The same images were also filtered by using the conventional

technique of camputing the 1-D DFT " along +the rows and

\

_ 152
" W19 E 5 _

967 E 44

TJ42 B 44 ' *.1
;518 E 4 |

293 E 44 -

.688 E 3

-

-.606 E & |

-.831 E 4

-.100 E 5 -4

i
-.128 E.5 JL

.0E 00 .10E03 .20E 03 .31E 03 . .41E 03 .5IE 03
.180 E 7 - (a) ‘

v

164 E 7 |
147 E 7.
A3 E 7.
114 B 7

T 981 E 6 4

.818 E 6

.654 E 6 |

491 E 6 4

«327 E 6

0164 E6 -

.000 E 0 |
.00 £ 00 .IOE 03 .20E 03

.31E° 03 J41E 03 .51E 03
' _ (b) '
Fig. 6.2 (a) Input speech signal

(b) Output 6f the FFT Processor's Simulator

: 153
+181 E 7 :

.164 E 7 |
148 E 7
JA3L E 7 4

115 E 7 1

985 E 6 -

.821 E 6 A

.657

. 329

.165

.729

663 E & | C (e .
581 E 4 J

I499E4. ,)

418 E 4

«336 E & A

«255 E 4

JA73 E 4

917 E 3

102 E 3

-.714 E 3

-.153 E 4

23 E 4
.00E 03 . 20E' 03 .31E'03 .41E ‘03
(a) -
. 6.2 () Output of the "0I00 FET Algorithm.

(d) Error between the outputs generated by the Simulator and
the OIO0 FFT Algorithm

-51E'03

théq alohg the coiumns. . The'fil;ered images computed by uging

the above two techniqueé were dompared and no g@gnific?nt differgnée
between the two outputs was found. Aithough the 2-D FFT processor ~
and convolver archltectures were lmplemented u51ﬁg floatlngwp01nt ‘

~ aritfhmetic, 51nmaathn of.the RNS—based l-D FFT processor indicates
that the RNS prinéiples‘can be directly extended to two and muiti—
dimensions. -Fig. 6.3(&) shows "an éxample of the image used to test
the 2-D radix—2 convolver and Figs. 6.3(b) and 6. 3(c) show the outputs
obtalned from the 2-D radix-2 convolver and the lmplementatlon u51ng
the conventional technique, respectively. The output images of N
Figs. 6.3(b) and 6-3(;) contain'256 intensity levelé and the foot—ﬁean—
square error between the two images was found ﬁé be less than 0.006%.

Due to the large length of the simulation programs, a listing of
the programs wrltten for the simulation of the 2-D radix-2 FFT processor/
convolver only is given in Appendix A, A listing of other programs
_méy be obtain;a from the ﬁept. of Electrical Engineering, Uni;ersity of

Windsor [50].

6.4 SUMMARY ’r"\vf;>H ') H

"In this section, the hardware requirements for the implementation
of the 1-D and 2-D ¥FT processor/convolvér, proposed in the'previous
chapters,‘have been presented. From these hardware requirements it is
noted that, for an equivaient level of performance, thé complexity of

the FFT processprs/eonvolvers proposed in this work is much less than

the complexity of the muiti-processor architectures and the organizations

Pig. 6.3b- Filtered image using radix-2. 'Fig. 6.3¢~ Filtered imag}e using the

2-D FFT Processor/Convolver : conventional: technique of
. hd ‘ C : o comp the 1-D DFTs along
| | the rows and then .along the
columns,

- T 156
,_L% . . E

-

using general purpose:ccmpﬁters proposed in the literature.

‘ The FFT,algorithms-and.their assoéiated processor architectures

]

have been verified via extensive simulation on a general purpose

‘computer. For a number of Input sequences, the result obtained

via simuléfiqn have been presented. Tt is shown ﬁhat the results

obtained via simulation agree with the results obtained via the
implementation of the standard FﬁT‘and convolution algorithms, thus
proving the validity of the algorithms and processor architectures

presented in this. thesis.

\&

. CHAPTER T .

CONCLUSIONS

fhe principﬁl objective of the.research work described in‘this
thesis was to develop algorithms and special purpose processor -
‘architectures for resl-time processing of 6ne—, two- and.multi-dimensional
signals. |

To achieve these goals, we presente& & wnified approach to the
development of fast algorithms for compﬁting alclass of multi-dimensional
unitayy transforms having separable kemels. The tecﬁniques for the
development of fast algorithms are based on the"factorization\of the
mlti-dimensional transférmation matrix into Kronecker proéucts of
one-dimensional transformation matriées. For a number of unitary
transforms, including Fourier, Walsh-Hadamard and generalized Walsh
transformsJ the.oneQdiménsional transformation matrix can be expressed :
as a produét of sparce-matrices. A new result, obtained in this work,
shows that the factorization of a multi-dimensional transformation
matrix can be expressed in terms of the factors of the one-dimensional
transformation matrices. The factorization thus obtained results in
fast unitary transform algorithms which may be implemented in n-stages
where each stage operates on the data in each dimension of the
multi-dimensionel array. When the mumber of elements in each dimension

Il

of the input array is restricted to M, where M = r_; the arithmetic

137

158

o%ératlons on the data in each.dlmen51on of the input array may be
comblned to form muitl—dlmenslonal butterfly operatlons for a class
of unltary transforms.

Based on the factorization fechnique developed in this work,
the development of nev two- and multi-dimensional Fourier, Waish-
Hadamard and gene:alized_walsh trensform slgorithms has been presented.
The nature of these slgorithms for one-, two- and multi—dimensional
transforms results in highly similsr processor architecsures. The se
processor structures have a high degfee_of parallelism with simplified
control for the generation of data and tﬁiddlg factor addresses. It
is also shown thst the wdimensional Fourier snd generalized Walsh
transforms can be‘gmplémented-withoa u-dimensional radix-r butterfly
_ operation, whiohlreqpires considerably less complex multiplications
than the conventional implementation using one—dlmen51onal radlx—r
butterfly .operation. In termslof hardware required for the 1mplementatlon
of spec1al purpose processors this rep;esents a minimem saving of
25% in multiplier hardware for the E-dimeﬁsional radix-2 implementation:
A saving of more than 25% is obfained for higher dimensions and: higher '
radix implementations.

The novel implementation of the Butterfly unit of one- and two-
dimensional FFT processors via the Residue-number system resulted in
a highly structured pipeline organization with only tpree kinds of
IC packages viz ROM, Serial/Random—aocess memory and trifstate buffers.
The pipeline throughput rate is dependent only on the ROM access'time

and is constant over all the pipeline stages. Using commercially available

159

&

IC packages it was showﬁ that‘ﬁhe“propqsed'FFT processor architectures
.are capablé of proceséing one- and two—dimensional‘sequences sampled‘r

at a rate of more than 11 and T million samples/second, £espectively.
. Although the proposed processor architectures call fdr partitioning

of the internal memory buffers into several sections, they can be
implemented with the use of currently available seriél memdry packages.
From the approximate mmber of packsges required for the implementation
of these processors, we can_éonclude tha¥ thé FFT proceésors proposed heré
are more economically viable thdq the multi—processér and muiti-butterfly

architectures proposed in the literature; for the same processing
peed requiremehts.)

As applications of the one. and two-dimensional FFT processors,
we also showed that these proceésdr organizations can be ﬁged to
perform convolutioﬂ of wide-band sequences, in real—time,‘byfusing the
overlap-save.methqd of sectioned convolutions. In the implementation
of oné;dimensionél convelution ét has been shoﬁn that by the prevision.
of extra buffers at the inpgt and output of a one-dimensional FFT
processor, the architecture can he used to filter a real-valued
input signal with little ﬁodification., In the case of two-dimensional
convolution -we presented a new memory organization to support real-
time filtering of two-dimensional data. We also showed that a’
two-dimensional FFT proéessor requires less hardware than'the

conventional implementation of the DFT of a two-dimensional ‘sequence

(which computes the tranéform-via one-dimensional DFT's of the rows

160

and then that of the bolumnS).~ For the computation of the DFT -
of smaller seqQuences,; we proved that the DFT of r %“—pOlnt one- °
dlmen51onal sequences can be- computed on an M-point one-dlmen51onal
FFT processor, and we also suggested some modifications of the M-
point FFT processor architecture to support the computﬁtion of r %“
point and re' %Er'point sequences. _
Although-the FFT processor architectures developed hé:e are based
on the bne-dimensional-ordered—%nput;ordered—dutput algorithm, otﬂef
factofizations of the one-dimensional transformation matrix; reported
in 1iteraturé,_pay‘also be used toiobtain different realizations of
the multi-dimensional FFT prébess;rs. The FFT algorithms and processor
architectures developed here were shown to be useful for thé
computation of Number-theorétic transforms definéd ovef complex

residue rings.

f1]

l2]

[4]
- [5]
161
(7]
[8]

[9l”

[10]

o]

§ ' N
REFERENCES '

e

I.J. Good, "The interaction algoritim and practical Fourier
analy51s", Journal of the Royal Statistical Society (London),
Vol. B20, pp. 361, 1958.

J,W. Cooley and J.W. Tukey, "An algorithm for the machine
calculation of complex Fourier series", Mathematics of
Computation, Vol. 19, pp. 297-301, April 1965,

J.E. Whetchel and D.F. Guinn, "The fast Fourier-Hedamard
transform and its use in signal representatlon and classification",”
Eascon '68 Record, D 561w5TO .

B.J. Fino and V.R. Algazi, "Unified matrix treatment of the fast
Walsh-Hadamard transform", IEEE Trans. on Computers, Vol. C-25,
No. 11, pp. 11hk2-1145, Nov. 1976.

N. Ahmed and T, Natarajan, '"Cooley-Tukey-type algorithm for
Haar-transform”, Electronics Letters, Vol. 9, No. 12, PP 276
278, 1kth June 1973

H.C. Andrews and K.L. Caspari, "A generalized technique for
spectral anslysis'", IEEE Trans. on Computers, Vol. C-19, No. 1,
pp. 16-25, Jan. 1970.

N. Ahmed abhd K.R. Rao, Orthogonal Transforms for Digital Slgnal
Proce551ng, Sprlnger—Verlag, New York, 1975.

V. Vliasenko and K.R. Reo, "Unified matrix trestment of discrete
transforms", IEEE Trans. on Computers, Vol. C-28, No. 12, pp. 934~
oo 4

938, Dec.'1979.

D.P. Colba and T.W. Parks, "A prime factor FFT algorithm using

~ high speed convolution", IEEE Trans. on Acoustics, Speech and

Signal Processing, Vol. ASSP-25, pp. 281-294, Aug. 1977.

H.F. Silverman, "An introduction to programming the Winograd

‘Fourier transform algorithm", IEEE Trans. on Acoustics, Speech

and Signal Processing, Vol. ASSP-25, pp. 152-165, April 1977.
J.E. Whelchel, Jr. and D.F. Guinn, "FFT organizations for high

speed digital filtering", IEEE Trans. on Audio and Electroacoustics,
Vol. AU-18, No. 2, pp. 159-168, June 1970.

161

[12]"

23]
[1hj
II?]
[16;

[17]

[20]
[21]

[22]

23]

262’

M.J. Corinthios, "A time—series‘anaiyzerf, MRI Symposia Ser.
New York: Polytechnic Press, Vol. 19, pp. 47-61, 1969. Lo

- M.J. Corlnthlos, "A fast: Fourler transform for high speed

signal processing", TEEE Trans on Computers, Vol. C=20,
No. 8, pp. Sh43-8L6, Aug. 19]1.
M J. Corlnthlos, "The de51gn of a class of fast Fourier
transform computers, IEEE Trans. on Computers, Vol. C-20,
No. 6, pp. 617-623, June 1971.

M.J. Corinthios et al., "A parallel radix-4 fast Fourier
. transform computer", IEEE Trans. on Computers, Vol. c-2bL,

pp. 80-92, Jan. 1975,

M.C. Pease, "An adaptation of fast Fourier transform for
parallel processing", Journal of Association for Computing
Machinary, Vol. 15, pp. 252-26k, April 1968

M.C. Pease, "Organlzatmon of large scale Fourier processors”,
Journal of the Association for Computing Machinery, Vol. 16,
No. 3, pp. hTh—h82 July 1969.

H.L. Groginsky and G.A. Works, "A pipeline fast Fourier
transform”, IEEE Trans. on Computers, Vol. C-19,-pp. 1Q15-
1019, Nov. 1970.

B. Liu and A. Peled, "A'new hardware realization of high
speed fast Fourier transform", IEEE Trans. on Acoustics,
Speech and Signal Processing, Vol. 23, pp. S43-S47, Dec. 197S.

B. Gold and T. Bially, "Parallelism in fast Fourier transform
*hardware", IEEE Trans. on Audio and Electroacoustlcs, Vol AU-21,

No. 1, pp. 5-16, Feb. 1973.

C.S. Joshi et al., "A video rate two-dimensional FFT processor",
IEEE International Conference on Acoustics, Speech and Signal

.Processing, Colerado, pp. TT4=TTT, April 1980. -,

Y.A, Geadah and M.J. Corinthios, "Natural, Dyadic and
Sequency order algorithms and processors for the Walsh- ~
Hadamard transforms", TEEE Trans. on Computers, Vol. C-26,
No. 5, pp. 435-hk2, May 1977.

L.R. Rebiner and B. Gold, Theory and Applicationsibf Digital
Signal Processing, Prentice Hall, Inc., 1975.

(24]

[25]

[26]

[27]

(28]

(29] -

1[591

[31]

[(32]

[33]

[3h],

[35]

163

\

~

»

L.W. Martinson and R.J. Smith, “Digltal matched filtering
with pipelined floating-point fast Fourier transforms",
IEEE Trans. on Acoustics, Speech-and Signal Processing, Vol.

© ASSP-23, No. 2, pp. 222-23h iApril 1975.

A. Baraniecka and G.A. Jullien, "Residue number .system
implementation of number theoretic transforms in complex
residue rings", IEEE Trans. on Acoustics, Speech and Signal
Processing,.Vol. ASSP-28, No. 3, pp. 285—291;'June.1980
G.D. Bergland, "A fast Fourler transform algormthm u51ng
base-8 iterations", Mathematics of Computation, Vol. 22)
pp. 275-278, ‘April 1968) L

R.R. Shively, "A digital processor to generate spectra in
real-time", IEEE Trans. on Computers, Vol. C-17, pp. 485-491,

- May 1968.

S.D. Pezaris, "A hO ns 17x17 array multlpller", IEEE Trans.

on Computers, Vol. C-20, pp. 442-L47; April 1971.

T. Hallin and M. Flynn, "Plpéllnlng of arlthmetrlc functlons ,
IEEE Trans. on Computers, Vol. C-21 DD. 880-886 -1972.

G.D. Eergland, "Fast Fourier transform hardware implementation -
- an overview", IEEE Trans. on Audio and Electroacoustlcs,
Vol. AU-1T, pp. 104.108, June 1969 :

. a

W.K. Pratt, Dlgltal Image Proc9551ng, John Wlley and Sons,
1978.

H.C. Andrevs, Computer Technlques in Image Proce531ng, Academic
Press, New York, 1970 .

I.J. Good, '"Thg relationship between two fast Fourier
transforms!, TEEE Trans. on Computers Vol. C-20, No. 3;-pp. 310-

. 317, March 1971,

B. Arambepols and P.J.W. Rayner, "Multi-dimensional fast
Fourier transform algorithms", Elegtromics Letters, Vol. 15,No.3,
pp. 382-383, 21lst June’ 1979. : : :

R.C. Singleton, "& method for computing the fast Fourier

.transform with auxiliary memory snd limited high-speed storage",

IZEE Trens. on Audlo and Elebtroacoustlcs Vol. AU—lS, pp. 91-97,
June 1967. . 1

*

" B.R. Hunt, "Data structures and computational organization -
. in digital image enchdncement", Proceedings of the IEEE,
-Vol. 60, No. 7, pp. 884-887, July 1972.

G.L. Anderson, "A stepwise approach to computing the -
multi-dimensional .fast Fourier transform of large arrays",
IEEE Trans. on Acoustic, Speech and Signal Processing,

Vol. ASSP-28, No. 3, pp. 280-284, June 1980.° . -

R.E. Twogood, "2-D digital signal processing with an array

16k

processor",_Proceedings of the IEFE International Conference -
on Acoustics, Speech ‘and Signal Processing, pp. 426, April 198q.

G.A. Jullien, "Residue number scaling and other operations using
ROM arrays",-IEEE Trans. on Computers, Vol. C-27, No. 4, pp. 325-

. 336, April 1978.

~ B.D. Tseng:ﬁa.A. Jullien and W.C. Miller, "Implementétion of

FFT structures using the residue number system", IEEE Trans. on

Computers, Vol. C-28, No. 11,pp. 831-845, Nov. 1979.

' C.H. Huang ahd F.J. Ta};lor, "High* speed DFT's using Residue

Numbers", IEEE International Conference on coustics, Speech

and Signal Processing, Colorade, pp. 238-2L%, April 1980..

W.K. Jenkins and B.J. Leon, "The luse of residue number systems

in the design of finite impulse response digital filters")

IEEE Trans. on Circuits and Systems, Vol. CAS-2k, pp. 191-201,

April 1977. '

M.A. Soderstrand, "A high speed low-cost recursive digital

filter using residue ‘number arithmetic", Proceedings’ of IEEE,

Vol. 65, pp. 1065-1067, July 1977.

~

N.S. Szabo and R.I. Taneke) Residue Arithmetic, snd its

“Applications tq Computer Technology, McGraw Hill Inc., New

York, 1967.°

T.G.Stockham, "High speed donvolution shd correlation", 1966

gPring Joint Conference, AFIPS Conference Proceedings, Vol.
PP. 229-233, 1966. o ' o -

28,

B.K. Gilbert et al., "A real-time hardware system for digital
processing of wide-band video images", IEEE Trans. on Computers,

Vol. C-25, No. 11} pp. 1089-1099, November 1976.

)

o

1165

G.A. Jullien, "Implementation of Multiplication module

& prime number, with applications to number theoretic
transforms”, IEEE Trans. on Computers, Vbl C-29, No. 10,
PP, 899—905 Oct. 1980.

I

*[48] Fred\J. Taylor, "Large modulo multlpllers", IEEE Inter-

naetional Conference on Acoustics, Speech and Signel’
Proc3551ng, Colorado, pp. 792—795 April 1980

[4a] "Bipolsr LSI Data Book. Monolithic Memories, Sunnyvale,
- CA., 1980
[50] A FFT Processor S Slmulator Dept. of- Electrlcal Englneerlng,

Uhlver51ty of Windsor, Windsor Canada.

166

APPENDIX A L

Computer "Programs for the Verification of the 2-D

radix -2 0I00 FFT Algorithm and the 2-D Convolver Architecture

NDONOHD0DN000000NN0NN000300

NDON e

**mmm*m*wm##wmmm*m FFTFPP serkRHR Rt R R R R

167

THIS PROGRAIM GEMERATES THE DFT OF A (32#%3ZD SECTION OF HN {IMARGE |
USING THE 2-D RADIX-2 0I00 AND 1-D RADIX-2 DIT FFT ALGORITHMS.
IT ALSO COMPUTES THE ERRUR BETWEEN THE MAGNITUDE OF THE FOURIER

. COEFFICIENTS GENERATED BY THE. TWQ ALGORITHMS. THE SPECIFIED

(2232 IMAGE SECTIOW. THE FOURIER COEFFICIENTS GEMERATED BY THE
TWO ALGORITHMS AND THE ERROR BETWEEN THE TNO ﬂUTPUT: ARE STORED

IN THE SPFCTFIFD RISC FILES FOR DT%FLP?
SUBRQUTINES REQUIRED - FFT2Dwd. R2IDIT, SHFT .

KIO - EUFFi AND BUFF2 OF THE FFT FROCESS0R .

DATA -~ TEMP, STORAGE AREA

RZRDT - FEAL PART OF THE INPUT TO THE DIT FFT ALGORITHM

R2IDT - IMRG. FART QF THE INFUT TQ THE DIT FFT RLGORITHM

TFTAR —, ARRAY STORING THE TWIDDLE FHPTnP~
INE NDEX OF THE INPUT BUFFER

108 INDEX QF THE QUTFUT BUFFER . Co
NSTG - # OF STAGES IM THE FFT HLGQ:}THH , T

CDHPLEV RIOCZE2: 32, 20, DATACZEZ: 322
REAI. R2RDTCZE2): RZIDTCSZD

- DOUBLE PEEC&?IDN COMPLEX TFTARCIZ. 2). TFEY

DOUBLE PRE IOM PL. TFX

INTEGER. TMEG’l”“‘;IHFILLSJ-IMGETLﬁfh OUTFTILACSY, DUTFILZ S,

COMMOMAFFTL, INB, IOB. NSTG
CATA . INB-LA, I0BA2/ NSTGASS

. TYPEMINPUT IMAGE FILE WAME : ™

READCLL, 1) CINFIILCI), =1, 5

FORMAT {552 ‘

TYPE"FILE NAME TO STORE <32+32) IMAGE SECTION : ™
REACCAL. 1) CIMGFTIILCIY, I=L, 5O

TYPE'FILLE MAME FOR QIOQ QUPUT ;"
READCLL, LY CAUTFILLCIY, I=L, 5> .

TYPE"FIILE MAME FOR RIT OUTPUT :* p
RERC:CAL, 1) CQUTFILZCIY, I=1, 5> ‘ :
TYPE"FILE NAME FOR ERROR OUTPUT :*

READ:14. 1) CERRFILLID. I'=di, 5O .

ACCEPT" IMAGE RILOCK # 7 POW BLK, COL. BLK 2 . TROW, ICOL
TRQM=Z2%< TRON-1) .

TOOL=24C ICOL -1 +L

QPEN @. INFIL

OPEN 1. IMGFIL, LEN=54. REC=32

PERD THE SPECIFIED «<Z2+Z=Z2» SECTIOH FROM THE.FILE “IMFIL-.

ERRF I

LT T TN Y L P

L - v

D00

B
o £ oy i | » - © 168
s IFCIROW EQ. 8) G0 °TO 12 L - |
DO 1@ I=1, IROW ,
READAOY CIMAGC TN, I=1, 128)
1@ . CONTINUE
12 00 28 I=1, 32 \
\ READC@Y < IMAGSTY. J=i, 12683
J1=a
DO 45 J=ICOL. ¢ICOL+ZL)
JL=J1+1
NI0CT, T4 £)=CHMPLYCFLOATC IMAGC Y 3, @,)
DATAC L. JLI=KIOCT, J1, 13-
5 . CONTINUE .. |
WRITE THE SELECTED IMAGE SECTION INTO THE FILE *IMGFIL-.
NRITECLY CIMRGA I, J=1COL. fIPDI*<‘\\
20 CONTINUE .
CLOSE © . | .
CLOSE 1. . u - \
N . |
c . COMPUTE THE REGUIRED TWIDDLE FRCTORS AND SAWE THESE IN TFTAE.
c TETRE®J, 1> AND TFTRBYI. 2) STORE. THE TWIRDLE FACTORS FOR THE
c FORWARD AND INVERSE FFT., RESPECTIVELY.
c
PI=—1. DE*DATANCL D@d 4. DG
TNV =1 -
DO 4@ =L, 2
DO 26 J=i, 32
CTEM=P %NV T=1)
TFEX=DCMPLXCE. DO, TFX)
TETABJ. I)=DCEXPCTFEX) |
20 FONTINUE o
TMy=—1 _ ' | ' _
48 CONTINUE F
- TH=0 ~

l: - . - .
c COMPUTE THE DFT OF THE IMAGE SECTION TH XI0 USING THE 2-D RADIN-2

o QICQ FFT RLLGORITHIM
C -

CALLL FFT2D64(KIOJTFTHB MW 222 '
QFEN 6!0UTFIL1)LEN=1LQJPEc-“?

QFENM 1, QUTFILZ, LEN=123, REC=Z2

QPEN EJERRFILJLEN=1?8-PFC=32

4

. SAYE THE NHUNTT”DE OF THE FOURIER r“DEFFIlIEJ'H"" PENEPHTED BY THE
0IQ0 FFT, HLGORITHN IN THE FILE GUTFTli‘

IR REEY

0O 166 I=1, 32

WRITECSY {CABSCKINCT, J, I0BY Y. J=1, 32> .

100 CONTINUE ' . \

O A5G J=1, I2 '

DO 126 K=t1,32 | : i
REZRDT K I=REALLDATACT. Kd) . '

o RRIDTKI=AIMAGKDATACT, K3 J. ' ‘

126 CONTINUE

169

COMPLTE THE 4-D EEfPOIHT RN QF THE TTH PDM QF THE IMRGE SECTIGN
AND SAYE THE FOW TRANSFORMS IM THE ARRAY “DATA”

LL REDITLREZRDT. RIIDT. Z2: 55
DO\ L1368 K=i, 32 '
CRRAC T, KI=CHMPLX(RZRDT (KD, P“IDT KX

CﬂNTiNUE =
Do 2e6 J=41, 32 . C
DQ 168 K=i, 32

RZRLTKS= FEHL\DHTH&KJJ)\
P“IDT&K)—HINHGKDHTH\&;J))

PUNTINUF

COMPUTE THE 1-D 32-FOINT DFT OF THE JTH COLUMN AND SAVE THE OUTPUT

QF THE COLUIMM TPHNSFORMS IN THE RRFAY “DATR”.

¢

CALL REDITCR2RDT, R2IDT, 32, S

DO 47H K=1.,32

PATALK, J)=CHPLXCRIRDT (K, R2IDTLKI > -
CONTINUE T : .
CONTINUE . . A .

CnMPUTF THE MRGNITUDE QF THE FOURIER. COEFFICIENTS GEMNERATED BY

THE 4-D DIT FFT ALGORITHM AND RI.S0 THE ERFOR BETWEEN THE MAGNI-

TUDE OF THE FOURIER COEFFICIENTS GENEFRATED BY THE 1~ DIT AND
2= OICO RLGURITHNS.‘ '

PO 256 1=1.3

0o 248 J=i1, 32
P”PDT\J\—FHBS\DHTHIIaJ))
PmIDT'T)—CHBS(TIO&I;JaIOE”)—R&PDTkJ\
COMTIMNUE

SAYE THE MAGNITUDE UF THE FQURIER COEFFICIENTS RND THE ERROR
IM THE FILEc'GUTFII HHD "ERRFIL” \

NRITE(i)(RERDTCJﬁ;J=1432
WRITECZIC(R2IDT TN, J=1, 3322
WRITE FREECIZMIRIIDTCI,

CONTINUE
CL.OSE ©

CLOSE 1

CLOSE 2

EMR ‘) '

LAV L W B

OO0 00

]

Y R]

if

)

1))

170

SUBROUTINE FFTE&64{FIDJTF+HEJIHV»NFTS}

THIS”SUERQUfINE CGNPUTES THE DFTZIDFT OF A 2-0 ARRAY 10 OF
SIZE CHNFTS#NPTS) USING THE MEMORY ARCTHITECTURE OF THE 2-D

RADIX-2 QI00 FFT ALGORITHIM.

TFTAE - ARRAY STORING THE TWIDDLE FACTORS FOR THE DIRECT AND
INWERSE FFT ~ .

Iy ‘@ FOR DIRRECT TRANSFORPM. =1 FOR IMVERSE TRHN?FDEH

. COMPLEX HWIOCZ2. 22,22

CQUELE FRECISION COMPLEX TFTRECZZ, 2. . A
COMPLEN WBUTT 4 - | ,

INTEGER IOQFZSCd. 2 NEQFS(4, 20 IPNT (4
COMMONAFFTLS IME. I0E. NSTS

PTSSA=MPTIHHPTS : , .
HEZ=HPTSA2 o

NEg=NE2-2 - “ S | ot
HEOFS <L, L2=8 N ,

MBOFS(L. 2)=8 .

NEQFS (2. 1.0=06 . - .
MEBOFS{2. 22=MR2 '

MBOFSI S, L2=NB2 .

NBQFS(Z, 2hv=a .

MEOFSC 4. Li=HB2

NEQFS (4, 20=NB2

INWIN=IMHY+L

FPERFORIM NETG STAGES OF THE FFT ALGORITHIML

LO SQ3 ISTE=t. NITG ‘ .
TEYREY MW=, IMV, © STAGE=". ISTG - !

INITIRLIZE THE STANTIMG BLOCK CIBLKI. # OF FOINTS TO BE FROCESSED.

CCMFELEY. CURRENT FOIMT POINTER <IPHTI, ROMACOLUMH OFFSET EQIHTEEﬁIDFS)»

ARD THE MASK FOR THE TWILDDLE FACTOR GEMERATOR.

TELK=1

MPELE =1k TS TE~20
ICADD=9

0O 5 J=ti. ¢

TRHT Iy =0

0O S K=l o

TOFSC T, K=

TOHT INUE :

MASKL==L ‘ - ~
CRLL SHFTCMASK. MASKL, (ISTG-12)

COMPUTE THE BLOCK. SUS-ELOCK AWND THE FOSITION OF THE <4 IMNFUT
PQINTE FeR THE MNexT BUTTERFLY OFERATION. WE HAWDLE THE 15T FFT
STAGE SEFARATELY.

1=
B

(R E
LY

000

) T30y

i

L. _— . ' | . - oan
o0 4R Isl, NES
DO 286 J=i. NBZ2)
IFCISTE ME 1) GO TO 10
I1=1
Ta=T
I12=1+ME2

2=J

13=T T
IZ=J4NR2 _ . v
T4=12 : S

J3=T2

"GO TO 1S ;

I1=NBOF S IBLK, L0+ I0FSCIBLK, 1o+1
J1=NEOFSC TR, 2)+I0FS IR, 20 +L,
I2=T1+NEd

Ja=J1

IZ=I1

JE=J1+MEd

Ia=Iz . °

Jg=J2 . .

IPHTCIBLK Y =MOD { IPNT C TELK I +L), NFBLKD
IOFSCIBLE, 20=MADC e JOFSCIRLE, 20 +10. HE4)
IFCIPHTCIBLE Y. NE A GO TO 45 '
IFCIOFSCIBLK, 2. NE. &6 GO TO 12
IOFSCIBLE., 10=1I0FSCIBLE, 11+l

IFCMODC IQFSCIBLK, A0, MPBLKY, NE. 8 GO TO 12
IFCIRLK. EQ. 2 ICADD=2 '

JIFCIBLK. EQL 4 ICHDD=9

TBLE=MODIBLK. 20+ 1CADD+L
Fai=1 \
Li=J

CDHPUTE THE ADDREZZES OF THE TWIDDLE FRACTORS REQUIRED FOR THE
CURRENMT EUITTERFLY OFERATIOMN.

ITF=IAND OORL-L 0, MRS +1
JTE=IRp0 CLA=10, MASK I +1
IJTF=ITF+JTF-L

FERFORM THE HEXT BUTTERFLY OFERATIOH AN STORE THe CIITRUT IMTO
THE QUTRUT BUFFER. ' '

CFBUTTOANSHIOC I, JL, INBY+RI00 T2, 72, TNED
CHBUTTCZ)=

MIOCTL, Ji. TNEY=NID0 12, J2, IME
MBUTTCZr=I0NIT, JE, INES+MIO0CI4, Jd, INES
MELTTO =0 I0C I3, J2, INEY=1HI0CI4. J4, TNES
K2=k L MRS
2=LL+HES . |
KIOCKL, L1, I0B =HBUTTC1i+xEUTTLI)
HIOCKZ, Li, IOB = HBUT TR +XBUTT 43 i TRTREC ITF, INWIND
MIOCKL, L2 I0R = CMRUT T —HBUTT I 0+ TETRR I TR, THWIND
RMIGCRZ. L2, IR = CHBUT TR —HBUTT 43 0w TFTREC IITE, INWIMND

U 172

i IF WE ARE COMPUTIMNG THE IFFT. WE DIVIDE THE OUTRFUT OF THE LAST
o FET STAGE BY MNPT##I, L _
IFCING, S0 &y 30 TO TEd .
IFCISTG. NE, NSTG) 30 TO Zao ' ‘
MIDCEL. LA, IOBX=XI0CKL L1, I0B) - PTSSR
MIOWKS. L. IOBY=KIOKKE, L1, I0B)/PTSSE
MIQCKL, L2, IOE»=XI0CKL, L2 T0E N -"FTSSH .
MIOGHZ. L2, I0E»=HIQCKZ. L2, IO PTSSR . .)
TR COMTINUE) '
4EA C COMTIMUE
' : I0B1=108 .
-~ IOB=INE" ' ot
. IMR=IORL :
sER COMTINUE
IOBA=IDE -
I0B=IMR
INE=I0St
RETURM
EMD
s SUBRQUTINE SHETCIRES, INORD. NED -)
PSUBROQUTINE TQ SHIFT LEFT OR RIGHT THE DATR IN IWORD BY MP PLACES.
iR +VE NP SPECIFIES SHIFT.LEFT. BND -YE SHIFT RIGHT..
i THE RESULT IS STORER IM IRES.
CTITL SHFT . F
.ENT SHFT : ' ‘
. ZREL :
SHFT . SHFT ' ‘ ' C ;
NREL RN ')

CSHFT: SAVE g ‘ : - -
LDA 9, ARGA. 3 | N
STA &, IRES ' ‘
LDA @, BRRGL. =
LDA 1. BAFRSE 2
MOW L. L. SHR i CHECK FOR MO SHIFT
JMF QUIT .
MOMZLSE L. 1. SHC 5 CHECK SHIFT RIGHT OF LEFT
IMP SHiF

SHRT MOVER Q. 1, SHR SHIFT RIGHT

LY

INF QUIT
INC 1.4, 2R : DOME OR MOT
JMF SHET 3 O
CJIMP AUTT ; YES .
SHLF: NEG 1.1 i BET —YE OF MP
SLOF: MOWILL 9,9, SHE 5 SHIFT LEFT

JMPOIT

ING 1. 4. 2Z2F + DAHET
ME SLOP. i MQ

SLAR I TR B, BIRES $ETORE THE RESULT
RTH

IRES: &

.. END

NOooma 7000700

Ty 4N

ETLYTRYRPF IR R VTTRY T8 o1 o1 S0 bR Bk L P IT $$wmm$$mmm*m$mw

THIS SUBRIUTIME COMPUTES THE OFT OF A SEQUENCE OF LENGTH M
By THE 1-0 FADIM-2 DIT FFT RLGORITHAM. ' ' !
WT —.REAL PART OF THE INPUT SEGIENCE

YT - IMAG PART OF THE INFUT SEQUENCE

M = # OF STRGES tH=zwsM Y -

WT AMD YT COMTAIN THE REAL & IMAG, FARTS OF THE FOURIER
COEFFICIENTS OM RETURM. ' ' :

SUBRQUTINE RIDITOMT. YTAMH MY
DIMEMSION HTONY, YTIRD
DOUBI.E FRECISION FPIZ. SCi. ARG
Ny 2=

Mitd.=tN—1, ~,

J=1 ‘

D3O T I=L. WML

IF(I.GE.J) 30 TN S
TEMP=XTCJ

MT T r=RT Ia

HWTHIN=TEMP

TEMP=7T{JI>

WTEI N =T

wTCIx=TEMF

c=f 2 ‘

IFCK. GE. J» GQ TO 7

J=JI-K

k=K 2

G0 To &

T=J+k,

PIZ=2 DE+I, 141SS2ESITEITIAT
0o 29 L=1.M .
LE=2u#hl

LEA=LE 2

SOlL=F 12 1E .
DO 26 J=1.LE1l

BRG=¢ J—L e300

C=COSCARG

S=SIMCRRG

Do 28 I=J.M.LE

IP=I1+_E1

TA=MT IR i+ T TP bkl

T T IR M =T IR awed

HT IR EETOIN~-TL
MTCIRISYTCI »=T2

MYl amHTOIN+TL .

MTCI = ToInsTR .
ST THUE: : -
RETURN

EHD

L]

-

=."J=.')i.‘]ﬂﬂﬂt‘lﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬁﬂ"}

Hekdekscolosolokiceicioloii. FILTERED soksekirriookitorsoiion

17h

THIS PROGRAM IMPLEMENTS THE MEMORY - ARCHITECTURE QF THE 2p

CONYOLWYER DESCRIBED IN THE THEqu " THE PROGRAM 1S DESIGMED TQ
- CONVYOLYE AN IMAGE OF SIZE {128%1i28> WITH AN FILTER IMPUILLSE

RESPONSE OF SIZE <A7#Ll7) BY THE USE OF QVYERLAP-SAYE TECHNIQUE
QF. SECTIONED COMMWOLUTIONS.

THE ARRAYS IPSL. IRSZ2 AND ITS IMPLEMENTS THE SAVE BUFFER QF THE
CONYOLLVER. - : .

SURROUTINES PEGLIRED - ENRDB. RMAF, FFT20S4, SHFT.

CTWIND ~ WIMDOW AREAR FOR ACCESSING THE EXT. MEMORY

XIO - FFT FROCESSOR”S BUFFERS

 XRES - PRRAY STORING THE TRANSFORM QF THE FILTER

. IMPULSE RESPOMSE
IRSL - BUFFER SYWi OF THE SAVE MEMORY
IRS2 - BUFFER S%W2 OF. THE SAYE MEMORY

TS - BUFFER TVWZ OF THE SAYE MEMORY - o

INTEGER IWINDL1B24)

- COMPLEN RIQ<ZE2, 320 2). VPFS“E:;;:).\INl-ﬂIN“

l.-'-

oono*

oa

DOUBLE PRECISION COMPILEX TFTHB“’?.:)

COMMOMNAWIND IWIMD

COMMONAFFTLATNE: T0R, NSTG

DATAR THBA LA T0BAZ. NSTGA S

IMTEGER. INFILCSY. QUTFUSY RESEILSSN. TFFILCSY . ..
INTEGER IRSLCLE.: LS, 4}, IRSZCLE, 18, 4), ICSCL6, 16, 4

GET THE IMNPUT-QUTPUT FILE NAMES.

TYPE" INFPUT IMRGE FILENAME : ™
READCAL, LXJCINFILCI Y, I=L, S

FORMAT(SS2) -
TYPE"OUPUT IMAGE FILENAME : "
READ L1, 13 COUTFILC I, I=1, 57 v

TYFE"FILTER RESPONSE FILENAME : ™
READ D LL, LOCPESFILCIN. I=4, 52
TYFE"TWIDDLE FACTOR FILEWNAME : "
RERD(ii lﬁ'TFFIL'I‘ I=1. 5>

PEHD THE FILES CONTAIMING THE TRAMSFORM OF THF FILTER IMPULqE
RESPONSE ANDR THE TWIDDLE FRCTORE.

OPEM @ RESFIL N
OPEN 1. TFFIL .
DA 20 I=1, 32

READCAY (XRESC T, T3, J=1, 32

COMTINUE

0O 33 I=t, 2

READCANCTETABC T, 10, J=1, 22

CONTINMUE .

CLOSE © - reg

CLOSE 1

£ N0 00

RN RSN,

i

D 00NN

1E6

- - - | [& T

CALL YMEMINELK, IERD

IFCMBLK. GE. 2@ GO To 48°
TWPECNOT ENOUGH EX. MEM?? NELK = “, NBLK
STOF \ -

.
-

PESEF“:.:G BLOCKS OF Ek- MEM.. & FERD THEmINP”T IMHGE INTO.FIBST L&
BLOCKS OF THE EX. MEM. INITIAL DISK ELOCK = Q. THITIRL EX. MEM. BLOCEK
= 4, TOTAL # OF DISK BLOCKS TO B READ = 2,

*

IDBLK=54 ' o

CRLL EXRDBCINFIL. TWIND. @, 1, 2@, IDELK, IERM . .
. IFCIER. EQ. @) GG TQ @ ’

TYFE"EXRDER EFROR #. PRPTIHL DISC BLOCKS FERAL.-= v, IER, TOELK

STOP ‘

OFEN ©. GUTFTL LEN=2%&. PEP—l”S
INITIALLIZE THE SAYE BUFFERS TQ ZEROQ.

RNG 58 I=1,4

DO &R J=Ll.1¢6

DO &8 K=i. 18

IRS.L(K» J, Ix=R

IRS2CK, J, I1>2=0 . s
CONTINUE o

DQ 768 I=L 2

DO 7A@ J=l 48
DO TE K=4i,1c
ICSCK, J, 1Xx=04
CONT INUE

. PEGINING GF THE CONYQLUTION BY THE AVERI_AP—SAYE TECHNIQUE.

WE SPLIT THE ¢A23+122>-POINT IMPUT IMARGE INTO 5S4 SECTIONS
WHERE ERCH SECTION CONTRINS iS«ilsd PIXELS THE DRTA FRaM

TWQ SUCCESSIVE IMRGE SECTIONS RND THE SRYE BUFFERS IS COMBINED,
TO GENERATE R BLOCK OF (332322 FDMP'E? FOINT.

DO S68 I=Li.§
DO <488 J=i, 4 : -
TYPE"PROCESSING SRECTION # " L. S 3 .o

GET "THE DATAR FROM THE SAYE PUrFEﬁq AND STORE IT IN THE
ARRAY «IO0. . ¢

/d’

DO 106 Ki=i. 18 ' : ’
DO 103 K2=L1, 15 A —~ :

ST ML=CMPLICFLORTC ICS (KL, K2, 252, FLOATC IRSACKL, K2, T2 0D
HIN2=QMPLK(FLDRT<IRSiuhL.PE.T)).FLGHT'IPCle‘ TR

YIOYKL, K2, THRY=XINL '
MIQUKL K2+18, IMBY=KINZ
ICSSKL, K2 20= IPH“'k‘ K I
CONT THUE :

-

-

B8

176

THBLK= I=L w2+t : 3
IWBLKA=TWRILK*+L -
CALL RMAP<INBLK, TIERD T
IFCIER. EQ. 8) GO TO 148 .\'
TYFE'RMAF ERROR # = ", IER |
. STOP - -
INCOL=CJ=10432 o

4
=
|

=
)

GET THE DARTA FRQOM THE IMRGE SECTIONS IN THE ROQW I AND COLUMMS
J AND J+L AND FORM A (32«?2)—FDINT BLOCK IN THE ARRAY <IO.

000K

DO 4158 Ji=i, 2
DO 140 Ki=t. Q ,
DO 148 K2=1, 15 ' .
TOFSL=CKL=1 %1 23+ INCOL+K2
IOFS2=I0FSL+1.5
K3=CJL—1 2GS+, . i
RNINLA=CMPLXCFILOATE ICS S, K2, 1)), FLOARTC IWINDCIOF Sy M) .
WINZ= CMPLwcFLOHTuININDaroFSL..,FLoarclwINocanszamn
. Kd=kK3+18 e

NIOCKS, K2, INBY=XINL
KIOCKS, K2+18, INRY=XINZ
ICSCKE, K2, 1)=IWINDCIOFS)
IRS2CKS. K2 Id=TWINDCIOFSD)
IRSLCKS. K25 Td=THINDCIQFSL)

140 CONTINUE ‘
CALL RMAP¢IMNBLKL. IERD
IFCIER. NE. @) GO TO tas

156 CONTINUE
. C - -
c COMPUTE THE DFT OF THE IMAGE SQECTIONS IN THE RRRAY KIO BY THE
C 2-D RADIX-2 QION FFT ALGORITHM.
c .
INV=@ '
CALL. FFTRDE4XI0, TFTAB. INV. 32>
C
o MULTIPLY THE DFT OF THE CURRENT IMAGE SECTIONS WITH THE OFT
» OF ‘THE FILTER IMPULSE RESPONSE.
o
DO 18@ Ki=1, 32
DO 158 K2=it, 32
KIOCKL, K2, INB>=XI0CKL. K2, I0B)*XRES (KL, K2)
150 COMTIMUE
b .
0 'COMPUTE THE IRFT OF THE PRocBCT ™M THE ameRw wIo.
o A g ’
1

CINW= .

CALL. FFTIDE4 (IO TFTAB, INY. 320 ' o a
RECOMER THE TWO SECTIONS OF THE FILTEREDN IMAGE FROM THE REAL
AND IMAG. PARTS OF THE LAST 16 RONS AND 18 COLS, OF %10, AMD
STORE THE FILTERED IMAGE SECTIONS INTO .THE EXT. NEMORY.

M OOMO

(5l

MO0 L

-2
a

AON o0 dE

=
=)

SS9

-t B

l.‘n.

s

.THE FILTERED

~

CALL RMAPCLWELK. IERY
IFCIER, ME @) GO TO 1§
0O 2@8 Ji=t, 2 ’

0Q 1838 ki=1, 2

DO 123 K2=1.1& .

S

IOFSL= KA Qd 33+ INCOL+ 2
IOFSa=TURSLHLE ,
K= Ta—1 0 PErkl+18

E=REee

T

IMINDCIQFSLo=RERL {xIQCKE, K4, TOR
INIHD1IGySC\ =AIMAGCIDCKS, Kty TOE D)

IFCARSCREAL CNIOCKS, Kd, TOBI 2. _
TFRBECRAIMAGONIQCKS, K, IQR M M0, GT. Z27E7. 32

GO_TO 183

“PITE FREECL2) (K. ke MIQUKE, Kd, 10

IMINDCIOFSaY
SOMTINUE
CALL RMOPCIMBLKL, IERY

IFCIER, NE. @) 80 TQ 103

COMTINUE

aT.

———m— N
S, B

Er. IDF

. JlJ
, . ‘
17T
] !
[
G2 TO 4iva
G303 TO 179

REFEAT THE RBOVE FROCESS FOR. THE QTHER IMAGE SECTIOMS IN

CURRENT RQi I.

-~

COMT IMUE

AT THE BEGINING OF A NEW ROM OF

BUFFER IC=.

00 458 Ji=
0O 450 Kis=:
DD 4SE Ko=
ICSCKE, K.

SRR

= |4 [.'.
gl ol gl
e Ty

l- i3 |-‘ =

l 5
CONT Nt

COMTIMNUE

00 S5@ I=i. 4&
CALL RMAPCI.
IFCIER. NE. @

DD S4G k=13

SR Te R INE S Rt '
p“TT:fﬁWfIHINDCJ+Hi)u
COMTIMNUE -

SONT INUE

STOP

EMD

‘AT THISZ P2INT RiLL THE IMAGE
IMRGE INTQ THE

SECT

FILE

SECTIONS

IOMS HRZ

COUTFIL

L

’
]

-

S1. IMINDCIOFSL), TOFSE.

‘THE

WE CLEAR THE SAYE

2E

B

o e . 178
H SUBEOUTINr PRI TS TF‘E‘FIL THIMNG, IS R«E‘Ll" F"IlELk’ MNELE. PELK, IER
s SUERQUTINE T"' RERD A DISK FILE INTO I='"~'T !"'IEI‘HI‘F"'I’ Y 4
i AWD DEFIME AN EXT, MEMORY !‘1F!F . '
s TREFIL: MAME OF THE FILE oo . .

ININD; ADDRESS OF THE WINDOM IN LOGICAL MEMORY :

s DISKBLY: INITIAL DISK BLOCK % TO BE RERD

(ENMBLE: INITIAL EXT. MEMORY MAF BLOCK WHICH WILL RECIEVE THE DATR
(THIS MUST BE MULTIPLE OF KD "

PMBLE: TOTAL # OFSK WORD BLOCKS I THE MAP

i Peir. srEcIFles WRTAL § OF DISK BLOCKS TO BE READ AND ALSO STORES
{ON RETURM: THE PRRTIAL BLOCK COUNT ‘IN CRSE OF END OF FILE Epgbﬁ

: IER: CDNTHIFH SYSTEM ERROR CODE .

A ., TITL EXR 1
. EMT EXED -
. . EZREL ‘ ' ' . YN
EXRDEs . EMDE
- * NREL

CEXDE: O SAVE @
LDA 8. RRGE. I ‘ e
MOWEL LR, G GET BYTE POINTER OF THE FILE NAME
STR Q. TSEFIL :
LDA 1. ARGL. =
LOR 2. MASKS .
RHDS 2. L ' . .
MOWER 1.1
mov"“ 1.1
STH L. NINBLK
LDE L, @RRGEI. 3
STA 1. DISKELK
DR 1. BARGE. 2
STR L. EXMBLE
} LDE 1. BARGY. I
STA L. MAPSLK
LDE 1. ARGS, ’
STR 1, PBELE : - o
LDA 1. ARGE, =
STA 1. IER -- : -
SUB L L /
=TA 1. BIER
. SYSTHM
. GCHHN
IMP ERFL
STR 2. FOHAR
SPITH
COPEM TV
IMF ERRL . \
Loa 8, MAPELK '
LOA 4. WINSLK
LDR 2. ENABLE
. SYSTH
. MAPDF
IMF ERRL :
LOE &, EXiMSLE

PHPPPPHPPPP

c | ’ | -179,
LDR L, BFPELE " GUERT TOTHLC & OF DISK SILOLKES '
' MOWE Lt . +SNITCH THE % TO LEFT EYTE
. LOR -2 FOHAM . ' -

: ADDZ .1, 2
' LDA &, DISKELKE _
L EYETH ‘ .

.ERDE TT
- JMP ERRZ

CLFETL: DA 2. FCHAM :) "

L IYETH -

. CLOSE 77 » Lo
ERRL: 5TH 2. BIER - - _ .

- RTH : - - o T
ERRZ: ,+ LDE 1. MASEL : ¥ -)

RAMDS 2,4 ' A l.

STH 1. BFBLK

LD A MASKSR

CAND L2

STA 2. RIER

JMP GLFIL
TARFIL: @ .
DISKELE:
EXMELK - @
FaLM: y : N
IER: g '
FCHRN: @
MASKL: ATTIED

MARSEZ: EVV7

,_.
[ix)

MASKZ. TEENIE

4
WIMNBLK: @
MAPELK: @

. EMD

<

s THIS SUBRQUTINE MASS WINDOW BLOCK & O TO THE RELRTIVE BLOCE #
;ELOCE " OF THE EXT. MEMORY MaP.
. TITL RMAP
L EMT RSP
CEETH . REMSA
 IRE
BMAF . RitER
" . NREL
CLCRMEFR: SAVE O o : -~
0P L BAR30. T 5 GET RMAF BLOCH # _
MOS L. L JMOVWE BLOCK # T THE LEFT BYTE. RIGHT EBYTE =4
LLF @, ARG, 3 o .

?3 ' ; SUBRQUTINE RMAR CELOCK. IERD

W1

ITR &, IEF

SLE a5

STH & RIER) °

LoA =01 ;DMLY BLOCK @ OF THE WIMDOR MILL BE RMARFED

*. REMA
JMF ERR

BT ’)
ERR TR 2. BIER

ETH
[N 1 '
1IER: i .

=2 8

ONODOa00 o

180

dodsodepoR ket ERP IMAG *w*m*m*mm**mw*m*$
THIS PROGRAM LGHPUTE; THE ERROR BETWEEN THE TWG IMFUT IMAGE

AT :TDPE“ THE ERROR INTO THE SPECIFIEDR OISC FILE IT Ri.S0
FRIMTS THE % RS ERROR On THE COMNSOLE.

INTEGER IMGL<2SED. INGE(EﬁS)»IFILElilE)aIFILEEﬂiBFJEFILEéiB}

- DOUBLE PRECIZSION SUi. ERR

TYFE"FILE MAME: IMAGE # L :"

RERD 14, 43 CIFILELC I, I=t, 1@) »

FORMATcABSI ' ' ’

TYPE'FILE .MAME: IMAGE & = "

READCAL, 13 ¢ IFTLESCT Y, I=d, 483

TYPE"FILE NAME TO STORE ERROR : *
READ¢Ll, 13 CEFILECTY, I=1. 180

BCCERT"# OF ROWS.COLS. IM THE IMAGES : “, IRL
IRC=IRI_%2 -
OPEN &, IFILEL

OFEM 1. IFILEZ2

OPEM 2, EFILE. LEN=IRC, REC=IRL
SUM=3, D .
ERR=Q. D&

0O SA I=i. IRL
PnHD-U--INCiuJ‘.J
REACCL) ¢ IMGEC T . T
DO 40 J=1. IRL
SUM=SUM+DFLOST ¢ TMGELYE T3 bk

IMGL T3 =IMGLE - IME2CTD
ERP=ERR+DFLOAT ¢ IMGLC T) Dk

CORT IMUE

WRITECSY CIMELCTY, J=1. IRLD ;o

COMHT INUE

ERF={ ERR. SHi3#1E3, [u3

TYPE"Y EMS ERROR BETWEEM THE TWO IMAGES = “. ERR
CLOSE
CLOSE
CLOSE
STOR
END

R

=1. 1
=L IRLY

[y 1=~ =

1950 ¢

1965

1967
1972
19727k
1976

1981 \
I

VITA AUCTORIS

-,

Born on August 12, Abohar, Punjab, Indih.
Completed high school at Govt. High School,
Abohar, P\m,ja.b, India.

Completed Pre-Engineering at the University of
Panjab, Punjab, Indisa. o

-

“Graduated from University of Kurukshetra,

Kuhlk.shetrs., Haryana, India, with the degree of
Bachelor of Science in Electrical Engineering.

x r

‘Worked.as Maintenance Engineer at Indo Superfine

Corp., Delhi, India.

Graduated Trom University of Windsor, Windsor,
Ontario, with the degree of M.A.Sc. in Electrical
Engineering.

4
-

Candidate for the degree of Doctor of Philosophy
in Electrical Engineering, University of Windsor,

Windsor, Cntario, Caneada.

	PROCESSOR ARCHITECTURES FOR FAST COMPUTATION OF MULTI-DIMENSIONAL UNITARY TRANSFORMS.
	Recommended Citation

	tmp.1363959364.pdf.PyA1A

