134 research outputs found

    Ectopic varices in a right diaphragm that ruptured into the pleural cavity.

    Get PDF
    The term ectopic varices is used to describe dilated portosystemic collateral veins in unusual locations other than the gastroesophageal region. We recently experienced a rare case of ectopic varices that developed in the right diaphragm and ruptured into the pleural cavity. A 68-year-old female with hepatocellular carcinoma complicated with liver cirrhosis was admitted due to an acute onset of dyspnea and right bloody pleural effusion. Because of the patient's advanced hepatocellular carcinoma and poor condition, conservative therapies such as hemostats and blood transfusion were selected. Even though the bleeding to the pleural cavity stopped spontaneously, the patient died due to a progression of liver failure. Autopsy revealed a huge collateral vein in the right diaphragm. The etiology, prevalence, relationship with portal hypertension, and treatment of ectopic varices are discussed herein

    Circadian variations in anaerobic threshold

    Get PDF
    This study aimed to determine whether certain respiratory and cardiovascular parameters associated with anaerobic threshold (AT), measured during graded exercise testing, occur at lower intensities in the morning than in the evening. Ten healthy Japanese men volunteered to participate in this study, which involved two conditions that were performed at different times of day: morning (M) exercise was performed between 9:00 and 10:00 a.m., and afternoon (A) exercise was performed between 4:00–6:00 p.m. After resting supine for 30 minutes, each subject performed graded cycle ergometer exercise testing comprising 90-second stages. Exercise intensity was initially 10 W and was increased by 10 W for each stage. Heart rate (HR), blood pressure (BP), absolute double product (DP), cardiac autonomic nervous system modulation, and ventilatory volume (VE) were measured during each exercise stage. Ventilatory threshold (VT), the double product breaking point (DPBP), and breaking point of the natural log of high frequency (ln HF) (HFBP) were reached at a lower exercise intensity in the M condition than in the A condition (p<.05). Values for VE at VT intensity, DP, HR, and systolic blood pressure (SBP) at DPBP were significantly lower in the M condition than in the A condition (p<.05). These data suggest that AT is reached at a lower intensity in the morning than in the afternoon, and that relative burden, as indicated by HR and SBP, is greater in the morning than in the afternoon. Exercise prescriptions that incorporate awareness of the circadian rhythms may prevent cardiac or cerebrovascular accidents during exercise

    A low-frequency IL4R locus variant in Japanese patients with intravenous immunoglobulin therapy-unresponsive Kawasaki disease

    Get PDF
    Background: Kawasaki disease (KD) is a systemic vasculitis which may be associated with coronary artery aneurysms. A notable risk factor for the development of coronary artery aneurysms is resistance to intravenous immunoglobulin (IVIG) therapy, which comprises standard treatment for the acute phase of KD. The cause of IVIG resistance in KD is largely unknown; however, the contribution of genetic factors, especially variants in immune-related genes, has been suspected. Methods: To explore genetic variants related to IVIG-unresponsiveness, we designated KD patients who did not respond to both first and second courses of IVIG therapy as IVIG-unresponsive patients. Using genomic DNA from 30 IVIG-unresponsive KD patients, we performed pooled genome sequencing targeting 39 immune-related cytokine receptor genes. Results: The single nucleotide variant (SNV), rs563535954 (located in the IL4R locus), was concentrated in IVIG-unresponsive KD patients. Individual genotyping showed that the minor allele of rs563535954 was present in 4/33 patients with IVIG-unresponsive KD, compared with 20/1063 individuals in the Japanese genome variation database (odds ratio = 7.19, 95% confidence interval 2.43-21.47). Furthermore, the minor allele of rs563535954 was absent in 42 KD patients who responded to IVIG treatment (P = 0.0337), indicating that a low-frequency variant, rs563535954, is associated with IVIG-unresponsiveness in KD patients. Although rs563535954 is located in the 3'-untranslated region of IL4R, there was no alternation in IL4R expression associated with the mior allele of rs563535954. However, IVIG-unresponsive patients that exhibited the minor allele of rs563535954 tended to be classified into the low-risk group (based on previously reported risk scores) for prediction of IVIG-resistance. Therefore, IVIG-unresponsiveness associated with the minor allele of rs563535954 might differ from IVIG-unresponsiveness associated with previous risk factors used to evaluate IVIG-unresponsiveness in KD. Conclusion: These findings suggest that the SNV rs563535954 could serve as a predictive indicator of IVIG-unresponsiveness, thereby improving the sensitivity of risk scoring systems, and may aid in prevention of coronary artery lesions in KD patients.ArticlePEDIATRIC RHEUMATOLOGY.17:34(2019)journal articl

    Rapid Nucleotide Exchange Renders Asp-11 Mutant Actins Resistant to Depolymerizing Activity of Cofilin, Leading to Dominant Toxicity in Vivo

    Get PDF
    Conserved Asp-11 of actin is a part of the nucleotide binding pocket, and its mutation to Gln is dominant lethal in yeast, whereas the mutation to Asn in human alpha-actin dominantly causes congenital myopathy. To elucidate the molecular mechanism of those dominant negative effects, we prepared Dictyostelium versions of D11N and D11Q mutant actins and characterized them in vitro. D11N and D11Q actins underwent salt-dependent reversible polymerization, although the resultant polymerization products contained small anomalous structures in addition to filaments of normal appearance. Both monomeric and polymeric D11Q actin released bound nucleotides more rapidly than the wild type, and intriguingly, both monomeric and polymeric D11Q actins hardly bound cofilin. The deficiency in cofilin binding can be explained by rapid exchange of bound nucleotide with ATP in solution, because cofilin does not bind ATP-bound actin. Copolymers of D11Q and wild type actins bound cofilin, but cofilin-induced depolymerization of the copolymers was slower than that of wild type filaments, which may presumably be the primary reason why this mutant actin is dominantly toxic in vivo. Purified D11N actin was unstable, which made its quantitative biochemical characterization difficult. However, monomeric D11N actin released nucleotides even faster than D11Q, and we speculate that D11N actin also exerts its toxic effects in vivo through a defective interaction with cofilin. We have recently found that two other dominant negative actin mutants are also defective in cofilin binding, and we propose that the defective cofilin binder is a major class of dominant negative actin mutants

    Single-Cell Analysis of the Multicellular Ecosystem in Viral Carcinogenesis by HTLV-1

    Get PDF
    成人T細胞白血病リンパ腫の多段階発がん分子メカニズムを解明 --難治性疾患の新規治療標的候補を複数同定--. 京都大学プレスリリース. 2021-09-07.Premalignant clonal expansion of human T-cell leukemia virus type-1 (HTLV-1)–infected cells occurs before viral carcinogenesis. Here we characterize premalignant cells and the multicellular ecosystem in HTLV-1 infection with and without adult T-cell leukemia/lymphoma (ATL) by genome sequencing and single-cell simultaneous transcriptome and T/B-cell receptor sequencing with surface protein analysis. We distinguish malignant phenotypes caused by HTLV-1 infection and leukemogenesis and dissect clonal evolution of malignant cells with different clinical behavior. Within HTLV-1–infected cells, a regulatory T-cell phenotype associates with premalignant clonal expansion. We also delineate differences between virus- and tumor-related changes in the nonmalignant hematopoietic pool, including tumor-specific myeloid propagation. In a newly generated conditional knockout mouse model recapitulating T-cell–restricted CD274 (encoding PD-L1) gene lesions found in ATL, we demonstrate that PD-L1 overexpressed by T cells is transferred to surrounding cells, leading to their PD-L1 upregulation. Our findings provide insights into clonal evolution and immune landscape of multistep virus carcinogenesis

    Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin

    Get PDF
    Heavy meromyosin (HMM) of myosin II and cofilin each binds to actin filaments cooperatively and forms clusters along the filaments, but it is unknown whether the two cooperative bindings are correlated and what physiological roles they have. Fluorescence microscopy demonstrated that HMM-GFP and cofilin-mCherry each bound cooperatively to different parts of actin filaments when they were added simultaneously in 0.2 μM ATP, indicating that the two cooperative bindings are mutually exclusive. In 0.1 mM ATP, the motor domain of myosin (S1) strongly inhibited the formation of cofilin clusters along actin filaments. Under this condition, most actin protomers were unoccupied by S1 at any given moment, suggesting that transiently bound S1 alters the structure of actin filaments cooperatively and/or persistently to inhibit cofilin binding. Consistently, cosedimentation experiments using copolymers of actin and actin-S1 fusion protein demonstrated that the fusion protein affects the neighboring actin protomers, reducing their affinity for cofilin. In reciprocal experiments, cofilin-actin fusion protein reduced the affinity of neighboring actin protomers for S1. Thus, allosteric regulation by cooperative conformational changes of actin filaments contributes to mutually exclusive cooperative binding of myosin II and cofilin to actin filaments, and presumably to the differential localization of both proteins in cells

    Chronic treatment with a smart antioxidative nanoparticle for inhibition of amyloid plaque propagation in Tg2576 mouse model of Alzheimer’s disease

    Get PDF
    The present study aimed to assess whether our newly developed redox nanoparticle (RNPN) that has antioxidant potential decreases Aβ levels or prevents Aβ aggregation associated with oxidative stress. The transgenic Tg2576 Alzheimer’s disease (AD) mice were used to investigate the effect of chronic ad libitum drinking of RNPN solution for 6 months, including memory and learning functions, antioxidant activity, and amyloid plaque aggregation. The results showed that RNPN-treated mice had significantly attenuated cognitive deficits of both spatial and non-spatial memories, reduced oxidative stress of lipid peroxide, and DNA oxidation. RNPN treatment increased the percent inhibition of superoxide anion and glutathione peroxidase activity, neuronal densities in the cortex and hippocampus, decreased Aβ(1-40), Aβ(1-42) and gamma (γ)-secretase levels, and reduced Aβ plaque observed using immunohistochemistry analysis and thioflavin S staining. Our results suggest that RNPN may be a promising candidate for AD therapy because of its antioxidant properties and reduction in Aβ aggregation, thereby suppressing its adverse side effect

    A multi-ethnic meta-analysis identifies novel genes, including ACSL5, associated with amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating progressive motor neuron disease that affects people of all ethnicities. Approximately 90% of ALS cases are sporadic and thought to have multifactorial pathogenesis. To understand the genetics of sporadic ALS, we conducted a genome-wide association study using 1,173 sporadic ALS cases and 8,925 controls in a Japanese population. A combined meta-analysis of our Japanese cohort with individuals of European ancestry revealed a significant association at the ACSL5 locus (top SNP p = 2.97 × 10−8). We validated the association with ACSL5 in a replication study with a Chinese population and an independent Japanese population (1941 ALS cases, 3821 controls; top SNP p = 1.82 × 10−4). In the combined meta-analysis, the intronic ACSL5 SNP rs3736947 showed the strongest association (p = 7.81 × 10−11). Using a gene-based analysis of the full multi-ethnic dataset, we uncovered additional genes significantly associated with ALS: ERGIC1, RAPGEF5, FNBP1, and ATXN3. These results advance our understanding of the genetic basis of sporadic ALS

    Stretching Actin Filaments within Cells Enhances their Affinity for the Myosin II Motor Domain

    Get PDF
    To test the hypothesis that the myosin II motor domain (S1) preferentially binds to specific subsets of actin filaments in vivo, we expressed GFP-fused S1 with mutations that enhanced its affinity for actin in Dictyostelium cells. Consistent with the hypothesis, the GFP-S1 mutants were localized along specific portions of the cell cortex. Comparison with rhodamine-phalloidin staining in fixed cells demonstrated that the GFP-S1 probes preferentially bound to actin filaments in the rear cortex and cleavage furrows, where actin filaments are stretched by interaction with endogenous myosin II filaments. The GFP-S1 probes were similarly enriched in the cortex stretched passively by traction forces in the absence of myosin II or by external forces using a microcapillary. The preferential binding of GFP-S1 mutants to stretched actin filaments did not depend on cortexillin I or PTEN, two proteins previously implicated in the recruitment of myosin II filaments to stretched cortex. These results suggested that it is the stretching of the actin filaments itself that increases their affinity for the myosin II motor domain. In contrast, the GFP-fused myosin I motor domain did not localize to stretched actin filaments, which suggests different preferences of the motor domains for different structures of actin filaments play a role in distinct intracellular localizations of myosin I and II. We propose a scheme in which the stretching of actin filaments, the preferential binding of myosin II filaments to stretched actin filaments, and myosin II-dependent contraction form a positive feedback loop that contributes to the stabilization of cell polarity and to the responsiveness of the cells to external mechanical stimuli
    corecore