96 research outputs found

    New Results from the Cosmic-Ray Program of theNA61/SHINE facility at the CERN SPS

    Get PDF
    The NA61/SHINE experiment at the SPS accelerator at CERN is a unique facility for the study of hadronic interactions at fixed target energies. The data collected with NA61/SHINE is relevant for a broad range of topics in cosmic-ray physics including ultrahigh-energy air showers and the production of secondary nuclei and anti-particles in the Galaxy. Here we present an update of the measurement of the momentum spectra of anti-protons produced in π\pi^-+C interactions at 158 and 350 GeV/c and discuss their relevance for the understanding of muons in air showers initiated by ultrahigh-energy cosmic rays. Furthermore, we report the first results from a three-day pilot run aimed at investigating the capability of our experiment to measure nuclear fragmentation cross sections for the understanding of the propagation of cosmic rays in the Galaxy. We present a preliminary measurement of the production cross section of Boron in C+p interactions at 13.5 AGeV/c and discuss prospects for future data taking to provide the comprehensive and accurate reaction database of nuclear fragmentation needed in the era of high-precision measurements of Galactic cosmic rays.Comment: To appear on the proceedings of the 36th International Cosmic Ray Conference (ICRC 2019

    NA49/NA61: results and plans on beam energy and system size scan at the CERN SPS

    Full text link
    This paper presents results and plans of the NA49 and NA61/SHINE experiments at the CERN Super Proton Synchrotron concerning the study of relativistic nucleus-nucleus interactions. First, the NA49 evidence for the energy threshold of creating quark-gluon plasma, the onset of deconfinement, in central lead-lead collisions around 30A GeV is reviewed. Then the status of the NA61/SHINE systematic study of properties of the onset of deconfinement is presented. Second, the search for the critical point of strongly interacting matter undertaken by both experiments is discussed. NA49 measured large fluctuations at the top SPS energy, 158A GeV, in collisions of light and medium size nuclei. They seem to indicate that the critical point exists and is located close to baryonic chemical potential of about 250 MeV. The NA61/SHINE beam energy and system size scan started in 2009 will provide evidence for the existence of the critical point or refute the interpretation of the NA49 fluctuation data in terms of the critical point.Comment: 11 pages, invited talk at Quark Matter 201

    On saturation of charged hadron production in pp collisions at LHC

    Full text link
    First results on charged hadron transverse momentum spectra in pp collisions obtained by the CMS Collaboration at LHC were analyzed in z-scaling approach. The first LHC data confirm z-scaling. The saturation regime of the scaling function psi(z) observed in pp and antp-pp interactions at lower energy sqrt s = 19-1960 GeV is verified. The saturation of psi(z) for charged hadrons is found down to z=0.05 at the highest energy sqrt s = 2360 GeV reached till now at colliders. A microscopic scenario of hadron production is discussed in connection with search for new signatures of phase transitions in hadron matter. Constituent energy loss and its dependencies on the transverse momentum of charged hadrons and collision energy are estimated. The beam energy scan at LHC in the saturation region is suggested.Comment: LaTeX, 6 pages, 6 figure

    Ion Program of Na61/Shine at the CERN SPS

    Full text link
    The NA61/SHINE experiment at the CERN SPS aims to discover the critical point of strongly interacting matter and study properties of the onset of deconfinement. These goals will be reached by measurements of hadron production properties in nucleus-nucleus, proton-proton and proton-lead interactions as a function of collision energy and size of the colliding nuclei. Furthermore, NA61/SHINE will perform numerous precision measurements needed for neutrino (T2K) and cosmic-ray (Pierre Auger Observatory and KASCADE) experiments. This paper summarizes physics arguments for the NA61/SHINE ion program and presents the status and plans of the experiment.Comment: 8 pages, 4 figures, invited talk at the SQM 2008, typos correcte
    corecore