33 research outputs found

    Effects of IKAP/hELP1 Deficiency on Gene Expression in Differentiating Neuroblastoma Cells: Implications for Familial Dysautonomia

    Get PDF
    Familial dysautonomia (FD) is a developmental neuropathy of the sensory and autonomous nervous systems. The IKBKAP gene, encoding the IKAP/hELP1 subunit of the RNA polymerase II Elongator complex is mutated in FD patients, leading to a tissue-specific mis-splicing of the gene and to the absence of the protein in neuronal tissues. To elucidate the function of IKAP/hELP1 in the development of neuronal cells, we have downregulated IKBKAP expression in SHSY5Y cells, a neuroblastoma cell line of a neural crest origin. We have previously shown that these cells exhibit abnormal cell adhesion when allowed to differentiate under defined culture conditions on laminin substratum. Here, we report results of a microarray expression analysis of IKAP/hELP1 downregulated cells that were grown on laminin under differentiation or non-differentiation growth conditions. It is shown that under non-differentiation growth conditions, IKAP/hELP1 downregulation affects genes important for early developmental stages of the nervous system, including cell signaling, cell adhesion and neural crest migration. IKAP/hELP1 downregulation during differentiation affects the expression of genes that play a role in late neuronal development, in axonal projection and synapse formation and function. We also show that IKAP/hELP1 deficiency affects the expression of genes involved in calcium metabolism before and after differentiation of the neuroblastoma cells. Hence, our data support IKAP/hELP1 importance in the development and function of neuronal cells and contribute to the understanding of the FD phenotype

    Strain on ferroelectric thin films

    Get PDF

    Molecular Neuropharmacology

    No full text

    Discs large regulates somatic cyst cell survival and expansion in drosophila testis

    No full text
    Gonad development requires a coordinated soma-germline interaction that ensures renewal and differentiation of germline and somatic stem cells to ultimately produce mature gametes. The Drosophila tumour suppressor gene discs large (dlg) encodes a septate junction protein functioning during epithelial polarization, asymmetric neuroblast division, and formation of neuromuscular junctions. Here, we report the role of dlg in testis development and its critical function in somatic cyst cells (SCCs). In these cells dlg is primarily required for their survival and expansion, and contributes to spermatocyte cyst differentiation. Cell death primarily occurred in SCCs at the end of spermatogonial amplification at a time when Dlg becomes restricted in wild-type (wt) testes to the distal somatic cells capping the growing spermatocyte cysts. RNAi depletion of dlg transcripts in early SCCs fully prevented testis development, whereas depletion in late SCCs resulted in a breakdown of spermatocyte cyst structure and germ cell individualization. Specific dlg expression in SCCs resulted in developmental rescue of dlg mutant testes, whereas its expression in germ cells exerted no such effect. dlg overexpression in wt testes led to spermatocyte cyst expansion at the expense of spermatogonial cysts. Our data demonstrate that dlg is essentially required in SCCs for their survival, expansion, and differentiation, and for the encapsulation of the germline cells
    corecore