71 research outputs found

    Constraints on Automorphic Forms of Higher Derivative Terms from Compactification

    Full text link
    By dimensionally reducing the higher derivative corrections of ten-dimensional IIB theory on a torus we deduce constraints on the E_{n+1} automorphic forms that occur in d=10-n dimensions. In particular we argue that these automorphic forms involve the representation of E_{n+1} with fundamental weight \lambda^{n+1}, which is also the representation to which the string charges in d dimensions belong. We also consider a similar calculation for the reduction of higher derivative terms in eleven-dimensional M-theory.Comment: Minor corrections, to appear in JHE

    Higher derivative type II string effective actions, automorphic forms and E11

    Full text link
    By dimensionally reducing the ten-dimensional higher derivative type IIA string theory effective action we place constraints on the automorphic forms that appear in the effective action in lower dimensions. We propose a number of properties of such automorphic forms and consider the prospects that E11 can play a role in the formulation of the higher derivative string theory effective action.Comment: 34 page

    New Horizons for Black Holes and Branes

    Get PDF
    We initiate a systematic scan of the landscape of black holes in any spacetime dimension using the recently proposed blackfold effective worldvolume theory. We focus primarily on asymptotically flat stationary vacuum solutions, where we uncover large classes of new black holes. These include helical black strings and black rings, black odd-spheres, for which the horizon is a product of a large and a small sphere, and non-uniform black cylinders. More exotic possibilities are also outlined. The blackfold description recovers correctly the ultraspinning Myers-Perry black holes as ellipsoidal even-ball configurations where the velocity field approaches the speed of light at the boundary of the ball. Helical black ring solutions provide the first instance of asymptotically flat black holes in more than four dimensions with a single spatial U(1) isometry. They also imply infinite rational non-uniqueness in ultraspinning regimes, where they maximize the entropy among all stationary single-horizon solutions. Moreover, static blackfolds are possible with the geometry of minimal surfaces. The absence of compact embedded minimal surfaces in Euclidean space is consistent with the uniqueness theorem of static black holes.Comment: 54 pages, 7 figures; v2 added references, added comments in the subsection discussing the physical properties of helical black rings; v3 added references, fixed minor typo

    Dp-branes, NS5-branes and U-duality from nonabelian (2,0) theory with Lie 3-algebra

    Full text link
    We derive the super Yang-Mills action of Dp-branes on a torus T^{p-4} from the nonabelian (2,0) theory with Lie 3-algebra. Our realization is based on Lie 3-algebra with pairs of Lorentzian metric generators. The resultant theory then has negative norm modes, but it results in a unitary theory by setting VEV's of these modes. This procedure corresponds to the torus compactification, therefore by taking a transformation which is equivalent to T-duality, the Dp-brane action is obtained. We also study type IIA/IIB NS5-brane and Kaluza-Klein monopole systems by taking other VEV assignments. Such various compactifications can be realized in the nonabelian (2,0) theory, since both longitudinal and transverse directions can be compactified, which is different from the BLG theory. We finally discuss U-duality among these branes, and show that most of the moduli parameters in U-duality group are recovered. Especially in D5-brane case, the whole U-duality relation is properly reproduced.Comment: 1+26 page

    D-Brane Wess-Zumino Terms and U-Duality

    Get PDF
    We construct gauge-invariant and U-duality covariant expressions for Wess-Zumino terms corresponding to general Dp-branes (for any p<D) in arbitrary 2<D<11 dimensions. A distinguishing feature of these Wess-Zumino terms is that they contain twice as many scalars as the 10-D compactified dimensions, in line with doubled geometry. We find that for D<10 the charges of the higher-dimensional branes can all be expressed as products of the 0-brane charges, which include the D0-brane and the NS-NS 0-brane charges. We give the general expressions for these charges and show how they determine the non-trivial conjugacy class to which some of the higher-dimensional D-branes belong.Comment: 42 pages. Typos corrected, an error in table 6 corrected, comments in the conclusions adde

    Stringy KLT relations, global symmetries, and E_7(7) violation

    Full text link
    We study consequences of the Kawai-Lewellen-Tye (KLT) relations applied to tree amplitudes in toroidal compactifications of string theory to four dimensions. The closed string tree amplitudes with massless external states respect a global SU(4)xSU(4) symmetry, which is enhanced to the SU(8) R-symmetry of N=8 supergravity in the field theory limit. Our analysis focuses on two aspects: (i) We provide a detailed account of the simplest SU(8)-violating amplitudes. We classify these processes and derive explicit superamplitudes for all local 5- and 6-point operators with SU(4)xSU(4) symmetry at order alpha'^3. Their origin is the dilatonic operator exp(-6 phi) R^4 in the closed-string effective action. (ii) We expand the 6-point closed string tree amplitudes to order alpha'^3 and use two different methods to isolate the SU(8)-singlet contribution from exp(-6 phi) R^4. This allows us to extract the matrix elements of the unique SU(8)-invariant supersymmetrization of R^4. Their single-soft scalar limits are non-vanishing. This demonstrates that the N=8 supergravity candidate counterterm R^4 is incompatible with continuous E_7(7) symmetry. From the soft scalar limits, we reconstruct to quadratic order the SU(8)-invariant function of scalars that multiplies R^4, and show that it satisfies the Laplace eigenvalue equation derived recently from supersymmetry and duality constraints.Comment: 23 pages, published versio

    Einstein-Gauss-Bonnet black strings

    Full text link
    We construct uniform black-string solutions in Einstein-Gauss-Bonnet gravity for all dimensions dd between five and ten and discuss their basic properties. Closed form solutions are found by taking the Gauss-Bonnet term as a perturbation from pure Einstein gravity. Nonperturbative solutions are constructed by solving numerically the equations of the model. The Gregory-Laflamme instability of the black strings is explored via linearized perturbation theory. Our results indicate that new qualitative features occur for d=6d=6, in which case stable configurations exist for large enough values of the Gauss-Bonnet coupling constant. For other dimensions, the black strings are dynamically unstable and have also a negative specific heat. We argue that this provides an explicit realization of the Gubser-Mitra conjecture, which links local dynamical and thermodynamic stability. Nonuniform black strings in Einstein-Gauss-Bonnet theory are also constructed in six spacetime dimensions.Comment: 33 pages, 11 figure

    Generalized Geometry and M theory

    Full text link
    We reformulate the Hamiltonian form of bosonic eleven dimensional supergravity in terms of an object that unifies the three-form and the metric. For the case of four spatial dimensions, the duality group is manifest and the metric and C-field are on an equal footing even though no dimensional reduction is required for our results to hold. One may also describe our results using the generalized geometry that emerges from membrane duality. The relationship between the twisted Courant algebra and the gauge symmetries of eleven dimensional supergravity are described in detail.Comment: 29 pages of Latex, v2 References added, typos fixed, v3 corrected kinetic term and references adde
    corecore