123 research outputs found

    Nanocrystalline hydroxyapatite and zinc-doped hydroxyapatite as carrier material for controlled delivery of ciprofloxacin

    Get PDF
    In bone disorders infections are common. The concentration of majority of antibiotics is very low in the bone tissue. A high local dose can be obtained from the ciprofloxacin-loaded hydroxyapatite nanoparticles. The present study is aimed at developing the use of hydroxyapatite and zinc-doped hydroxyapatite nanoparticles as a carrier for ciprofloxacin drug delivery system. The ciprofloxacin-loaded hydroxyapatite and zinc-doped hydroxyapatite have a good antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Hydroxyapatite and zinc-doped hydroxyapatite were prepared and characterized using X-ray diffraction, Transmission electron microscopy and inductively coupled plasma optical emission spectrometry. They were loaded with ciprofloxacin using optimized drug loading parameters. Drug loading, in vitro drug release and antimicrobial activity were analyzed. The influence of zinc on the controlled release of ciprofloxacin was analyzed. The results show that the presence of zinc increases the drug release percentage and that the drug was released in a controlled manner

    Bioactive Electrospun Scaffolds Delivering Growth Factors and Genes for Tissue Engineering Applications

    Get PDF
    A biomaterial scaffold is one of the key factors for successful tissue engineering. In recent years, an increasing tendency has been observed toward the combination of scaffolds and biomolecules, e.g. growth factors and therapeutic genes, to achieve bioactive scaffolds, which not only provide physical support but also express biological signals to modulate tissue regeneration. Huge efforts have been made on the exploration of strategies to prepare bioactive scaffolds. Within the past five years, electrospun scaffolds have gained an exponentially increasing popularity in this area because of their ultrathin fiber diameter and large surface-volume ratio, which is favored for biomolecule delivery. This paper reviews current techniques that can be used to prepare bioactive electrospun scaffolds, including physical adsorption, blend electrospinning, coaxial electrospinning, and covalent immobilization. In addition, this paper also analyzes the existing challenges (i.e., protein instability, low gene transfection efficiency, and difficulties in accurate kinetics prediction) to achieve biomolecule release from electrospun scaffolds, which necessitate further research to fully exploit the biomedical applications of these bioactive scaffolds

    Preparation and Application of Electrodes in Capacitive Deionization (CDI): a State-of-Art Review

    Get PDF
    As a promising desalination technology, capacitive deionization (CDI) have shown practicality and cost-effectiveness in brackish water treatment. Developing more efficient electrode materials is the key to improving salt removal performance. This work reviewed current progress on electrode fabrication in application of CDI. Fundamental principal (e.g. EDL theory and adsorption isotherms) and process factors (e.g. pore distribution, potential, salt type and concentration) of CDI performance were presented first. It was then followed by in-depth discussion and comparison on properties and fabrication technique of different electrodes, including carbon aerogel, activated carbon, carbon nanotubes, graphene and ordered mesoporous carbon. Finally, polyaniline as conductive polymer and its potential application as CDI electrode-enhancing materials were also discussed
    corecore