62 research outputs found

    Meshless methods for ‘gas ‐ evaporating droplet’ flow modelling

    Get PDF
    The main ideas of simulation of two-phase flows, based on a combination of the conventional Lagrangian method or fully Lagrangian method (FLM) for the dispersed phase and the mesh-free vortex and thermal blob methods for the carrier phase, are summarised. A meshless method for modelling of 2D transient, non-isothermal, gasdroplet flows with phase transitions, based on a combination of the viscous-vortex and thermal-blob methods for the carrier phase with the Lagrangian approach for the dispersed phase, is described. The one-way coupled, two-fluid approach is used in the analysis. The method makes it possible to avoid the `remeshing' procedure (recalculation of flow parameters from Eulerian to Lagrangian grids) and reduces the problem to the solution of three systems of ordinary differential equations, describing the motion of viscous-vortex blobs, thermal blobs, and evaporating droplets. The gas velocity field is restored using the Biot-Savart integral. The numerical algorithm is verified against the analytical solution for a non-isothermal Lamb vortex. The method is applied to modelling of an impulse two-phase cold jet injected into a quiescent hot gas, taking into account droplet evaporation. Various flow patterns are obtained in the calculations, depending on the initial droplet size: (i) low-inertia droplets, evaporating at a higher rate, form ring-like structures and are accumulated only behind the vortex pair; (ii) large droplets move closer to the jet axis, with their sizes remaining almost unchanged; and (iii) intermediate-size droplets are accumulated in a curved band whose ends trail in the periphery behind the head of the cloud, with larger droplets being collected at the front of the two-phase region

    Effect of Peierls transition in armchair carbon nanotube on dynamical behaviour of encapsulated fullerene

    Get PDF
    The changes of dynamical behaviour of a single fullerene molecule inside an armchair carbon nanotube caused by the structural Peierls transition in the nanotube are considered. The structures of the smallest C20 and Fe@C20 fullerenes are computed using the spin-polarized density functional theory. Significant changes of the barriers for motion along the nanotube axis and rotation of these fullerenes inside the (8,8) nanotube are found at the Peierls transition. It is shown that the coefficients of translational and rotational diffusions of these fullerenes inside the nanotube change by several orders of magnitude. The possibility of inverse orientational melting, i.e. with a decrease of temperature, for the systems under consideration is predicted.Comment: 9 pages, 6 figures, 1 tabl

    SUMO modification of the neuroprotective protein TDP1 facilitates chromosomal single-strand break repair

    Get PDF
    Breaking and sealing one strand of DNA is an inherent feature of chromosome metabolism to overcome torsional barriers. Failure to reseal broken DNA strands results in protein-linked DNA breaks, causing neurodegeneration in humans. This is typified by defects in tyrosyl DNA phosphodiesterase 1 (TDP1), which removes stalled topoisomerase 1 peptides from DNA termini. Here we show that TDP1 is a substrate for modification by the small ubiquitin-like modifier SUMO. We purify SUMOylated TDP1 from mammalian cells and identify the SUMOylation site as lysine 111. While SUMOylation exhibits no impact on TDP1 catalytic activity, it promotes its accumulation at sites of DNA damage. A TDP1 SUMOylation-deficient mutant displays a reduced rate of repair of chromosomal single-strand breaks arising from transcription-associated topoisomerase 1 activity or oxidative stress. These data identify a role for SUMO during single-strand break repair, and suggest a mechanism for protecting the nervous system from genotoxic stress

    Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3-90 years

    Get PDF
    Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns

    Chronology of holocene climate and vegetation changes and their connection to cultural dynamics in Southern Siberia

    Get PDF
    Two sediment sequences from Big Kyzykul Lake and the Shushenskoe paleolake in the Minusinsk depression, Southern Siberia, were studied by pollen, microfossil, and geochemical analyses, as well as radiocarbon dating. The records indicate the persistence of an arid period between ~11.7–7.6 cal kyr BP, increased effective moisture since ~7.6 cal kyr BP, 2 humid impulses at ~5.1 and 2.8 cal kyr BP separated by a dry interval, and the return to generally drier conditions after ~1.5 cal kyr BP. This is contrary to the findings noted for the Eurasian temperate zone, but agrees with proxy data reported for arid and semi-arid zones of Central Asia. Reconstructed changes in climate and environment are in good agreement with archaeological data. Almost no evidence of the Mesolithic-Neolithic cultures has been reported for the depression, which is consistent with a dry early and mid-Holocene. Effective moisture started to rise from ~7.6 cal kyr BP, followed by the beginning of human occupation at ~6 cal kyr BP. Two maxima of humidity are recorded in the late Holocene, corresponding to the arrival of trees in the depression. No gap was to be found from the Early Bronze to the Iron ages cultures at this time, with the exception of a dry interval at ~3.6–3.3 cal kyr BP, when the Minusinsk depression was sparsely occupied. The data obtained suggest a close relationship between climate change and cultural dynamics in the steppe zone of Southern Siberia.
    corecore