116 research outputs found
Stringy Instantons in SU(N) N=2 Non-Conformal Gauge Theories
In this paper we explicitly obtain the leading corrections to the SU(N) N=2
prepotential due to stringy instantons both in flat space-time and in the
presence of a non-trivial graviphoton background field. We show that the
stringy corrections to the prepotential are expressible in terms of the
elementary symmetric polynomials. For N>2 the theory is not conformal; we
discuss the introduction of an explicit dependence on the string scale \alpha'
in the low-energy effective action through the stringy non-perturbative sector.Comment: 22 pages, 1 figur
Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-a-chip applications
Optical techniques are finding widespread use in analytical chemistry for
chemical and bio-chemical analysis. During the past decade, there has been an
increasing emphasis on miniaturization of chemical analysis systems and
naturally this has stimulated a large effort in integrating microfluidics and
optics in lab-on-a-chip microsystems. This development is partly defining the
emerging field of optofluidics. Scaling analysis and experiments have
demonstrated the advantage of micro-scale devices over their macroscopic
counterparts for a number of chemical applications. However, from an optical
point of view, miniaturized devices suffer dramatically from the reduced
optical path compared to macroscale experiments, e.g. in a cuvette. Obviously,
the reduced optical path complicates the application of optical techniques in
lab-on-a-chip systems. In this paper we theoretically discuss how a strongly
dispersive photonic crystal environment may be used to enhance the light-matter
interactions, thus potentially compensating for the reduced optical path in
lab-on-a-chip systems. Combining electromagnetic perturbation theory with
full-wave electromagnetic simulations we address the prospects for achieving
slow-light enhancement of Beer-Lambert-Bouguer absorption, photonic band-gap
based refractometry, and high-Q cavity sensing.Comment: Invited paper accepted for the "Optofluidics" special issue to appear
in Microfluidics and Nanofluidics (ed. Prof. David Erickson). 11 pages
including 8 figure
Recommended from our members
Leukemogenesis Induced by an Activating β-catenin mutation in Osteoblasts
Cells of the osteoblast lineage affect homing, 1, 2 number of long term repopulating hematopoietic stem cells (HSCs) 3, 4, HSC mobilization and lineage determination and B lymphopoiesis 5-8. More recently osteoblasts were implicated in pre-leukemic conditions in mice 9, 10. Yet, it has not been shown that a single genetic event taking place in osteoblasts can induce leukemogenesis. We show here that in mice, an activating mutation of β-catenin in osteoblasts alters the differentiation potential of myeloid and lymphoid progenitors leading to development of acute myeloid leukemia (AML) with common chromosomal aberrations and cell autonomous progression. Activated β- catenin stimulates expression of the Notch ligand Jagged-1 in osteoblasts. Subsequent activation of Notch signaling in HSC progenitors induces the malignant changes. Demonstrating the pathogenetic role of the Notch pathway, genetic or pharmacological inhibition of Notch signaling ameliorates AML. Nuclear accumulation and increased β-catenin signaling in osteoblasts was also identified in 38% of patients with MDS/AML. These patients showed increased Notch signaling in hematopoietic cells. These findings demonstrate that genetic alterations in osteoblasts can induce AML, identify molecular signals leading to this transformation and suggest a potential novel pharmacotherapeutic approach to AML
Stringy instanton effects in N=2 gauge theories
We study the non-perturbative effects induced by stringy instantons on N=2
SU}(N) gauge theories in four dimensions, realized on fractional D3 branes in a
C^3/Z_3 orientifold. The stringy instantons, corresponding to D(-1) branes that
occupy a node of the orientifold quiver diagram where no D3 brane is present,
have the right content of zero-modes to produce non-perturbative terms in the
four-dimensional effective action. In the SU(2) theory these terms have the
same structure for all instanton numbers and yield a series of non-perturbative
corrections to the prepotential. We explicitly compute these corrections up to
instanton number k=5 using localization methods.Comment: 31 pages, 1 figure, PdfLaTe
Proceedings of Abstracts, School of Physics, Engineering and Computer Science Research Conference 2022
© 2022 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Plenary by Prof. Timothy Foat, ‘Indoor dispersion at Dstl and its recent application to COVID-19 transmission’ is © Crown copyright (2022), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected] present proceedings record the abstracts submitted and accepted for presentation at SPECS 2022, the second edition of the School of Physics, Engineering and Computer Science Research Conference that took place online, the 12th April 2022
Production of transgenic first filial puppies expressing mutated human amyloid precursor protein gene
Propagation of transgenic animals by germline transmission using assisted reproductive technologies such as in vitro fertilization (IVF) is the most efficient way to produce transgenic colonies for biomedical research. The objective of this study was to generate transgenic puppies from a founder dog expressing the mutated human amyloid precursor protein (mhAPP) gene. Experiment I assessed the characteristics of the semen prepared by freshly diluted, swim-up, and Percoll gradient methods using a computer-assisted semen analyzer (CASA). Motile and progressively motile sperm counts were higher in the Percoll gradient samples (p < 0.05) than in the swim-up and freshly diluted samples. In Experiment II, a total of 59, 70, and 65 presumptive zygotes produced by fresh, Percoll gradient, and swim-up methods, respectively, were transferred to surrogates (5 for each group); the Percoll gradient (27.27%) and swim-up samples (14.29%) showed the highest blastocyst formation rates, while fresh diluted semen did not produce any blastocyst. Experiment III examined the full-term developmental ability of embryos. Among the 5 surrogates in the Percoll gradient group, one (20.0%) became pregnant; it had 4 (6.15%) sacs and delivered 4 (6.15%; 2 males and 2 females) live puppies. Among the 4 puppies, 2 (50.0%) were found to transmit the transgene on their nail and toe under GFP fluorescence. Furthermore, the integration and expression of the mhAPP transgene were examined in the umbilical cords of all the IVF-derived puppies, and the presence of the transgene was only observed in the GFP-positive puppies. Thus, semen prepared by the Percoll method could generate transgenic puppies by male germline transmission using the IVF technique. Our result will help propagate transgenic dogs efficiently, which will foster human biomedical research
On Maintaining Linear Convergence of Distributed Learning and Optimization Under Limited Communication
In distributed optimization and machine learning, multiple nodes coordinate to solve large problems. To do this, the nodes need to compress important algorithm information to bits so that it can be communicated over a digital channel. The communication time of these algorithms follows a complex interplay between a) the algorithm's convergence properties, b) the compression scheme, and c) the transmission rate offered by the digital channel. We explore these relationships for a general class of linearly convergent distributed algorithms. In particular, we illustrate how to design quantizers for these algorithms that compress the communicated information to a few bits while still preserving the linear convergence. Moreover, we characterize the communication time of these algorithms as a function of the available transmission rate. We illustrate our results on learning algorithms using different communication structures, such as decentralized algorithms where a single master coordinates information from many workers and fully distributed algorithms where only neighbours in a communication graph can communicate. We conclude that a co-design of machine learning and communication protocols are mandatory to flourish machine learning over networks
Evaluation of Genome-Enabled Prediction for Carcass Primal Cut Yields Using Single-Step Genomic Best Linear Unbiased Prediction in Hanwoo Cattle
There is a growing interest worldwide in genetically selecting high-value cut carcass weights, which allows for increased profitability in the beef cattle industry. Primal cut yields have been proposed as a potential indicator of cutability and overall carcass merit, and it is worthwhile to assess the prediction accuracies of genomic selection for these traits. This study was performed to compare the prediction accuracy obtained from a conventional pedigree-based BLUP (PBLUP) and a single-step genomic BLUP (ssGBLUP) method for 10 primal cut traits—bottom round, brisket, chuck, flank, rib, shank, sirloin, striploin, tenderloin, and top round—in Hanwoo cattle with the estimators of the linear regression method. The dataset comprised 3467 phenotypic observations for the studied traits and 3745 genotyped individuals with 43,987 single-nucleotide polymorphisms. In the partial dataset, the accuracies ranged from 0.22 to 0.30 and from 0.37 to 0.54 as evaluated using the PBLUP and ssGBLUP models, respectively. The accuracies of PBLUP and ssGBLUP with the whole dataset varied from 0.45 to 0.75 (average 0.62) and from 0.52 to 0.83 (average 0.71), respectively. The results demonstrate that ssGBLUP performed better than PBLUP averaged over the 10 traits, in terms of prediction accuracy, regardless of considering a partial or whole dataset. Moreover, ssGBLUP generally showed less biased prediction and a value of dispersion closer to 1 than PBLUP across the studied traits. Thus, the ssGBLUP seems to be more suitable for improving the accuracy of predictions for primal cut yields, which can be considered a starting point in future genomic evaluation for these traits in Hanwoo breeding practice
- …