28 research outputs found

    Judging in the Genomic era: judges’ genetic knowledge, confidence and need for training

    Get PDF
    Genetic information is increasingly used in many contexts, including health, insurance, policing and sentencing – with numerous potential benefits and risks. Protecting from the related risks requires updates to laws and procedures by justice systems. These updates depend to a large extent on what the key stakeholders – the judiciary – know and think about the use of genetic information. This study used a battery of 25 genetic knowledge items to collect data from 73 supreme court judges from the same country (Romania) on their knowledge of genetic information. Their responses were compared with those of two other groups: lawyers (but not judges; N = 94) and nonlawyers (N = 116) from the same country. The data were collected at approximately the same time from the three groups. The judges’ results were also compared to the results obtained from a general population data collection (N = 5310). The results showed that: 1) judges had overall better knowledge of genetics than the other groups, but their knowledge was uneven across different genetic concepts; 2) judges were overall more confident in their knowledge than the other two groups, but their confidence was quite low; and 3) the correlation between knowledge and confidence was moderate for judges, weak for lawyers and not significant for non-lawyers. Finally, 100% of the judges agreed that information on gene-environment processes should be included in judges’ training. Increasing genetic expertise of the justice stakeholders is an important step towards achieving adequate legal protection against genetic data misuse

    State v. Yepez: Admissibility and Relevance of Behavioral Genetic Evidence in a Criminal Trial

    No full text

    Review: Genetics, Crime and Justice

    No full text

    Perceptions of nature, nurture and behaviour

    Get PDF
    Trying to separate out nature and nurture as explanations for behaviour, as in classic genetic studies of twins and families, is now said to be both impossible and unproductive. In practice the nature-nurture model persists as a way of framing discussion on the causes of behaviour in genetic research papers, as well as in the media and lay debate. Social and environmental theories of crime have been dominant in criminology and in public policy while biological theories have been seen as outdated and discredited. Recently, research into genetic variations associated with aggressive and antisocial behaviour has received more attention in the media. This paper explores ideas on the role of nature and nurture in violent and antisocial behaviour through interviews and open-ended questionnaires among lay publics. There was general agreement that everybody’s behaviour is influenced to varying degrees by both genetic and environmental factors but deterministic accounts of causation, except in exceptional circumstances, were rejected. Only an emphasis on nature was seen as dangerous in its consequences, for society and for individuals themselves. Whereas academic researchers approach the debate from their disciplinary perspectives which may or may not engage with practical and policy issues, the key issue for the public was what sort of explanations of behaviour will lead to the best outcomes for all concerned

    Effect of barium on the structure and characteristics of Mg2Si reinforced particles Al–Mg2Si–Cu in situ composite

    No full text
    Addition of barium (Ba) in various concentrations is susceptible to cause changes on Mg2Si reinforced particles in Al–Mg2Si–Cu in situ composite. In this study, six samples of the composite with different concentrations of Ba (0.1–0.8 wt%) were prepared. The alteration of Mg2Si structure, phase reaction characteristics and cooling curves behaviour of the composite were investigated via optical microscope, scanning electron microscope (SEM), and computer aided cooling curve thermal analysis (CACCTA). The results depicted that 0.2 wt% exhibit the appropriate concentration of Ba added in order to modify and refine the Mg2Si particles. The skeleton and dendrite shape of Mg2Si particles have been transformed into fine polygonal shape accompanied with decreased in average size from 1178.5 ”m of the unmodified particles to 289.1 ”m. In fact, the refinement of Mg2Si particles is associated with the increased of nucleation temperature, TN of the respective phase together with the least undercooling, ΔU correspond to the easiness of the particles to be formed prior to its growth. Meanwhile, the decrement of TN respective to other concentrations of Ba indicates the opposite refinement effect of the particles as it became coarser. Besides, the refinement of Mg2Si has induced more nucleation of the particles resulting the increment of the density of particles and better distribution over the composite area. Therefore, the corresponding mechanical and tribological properties of the composite are believed to be improved accordingly

    The effects of varying Mg and Si levels on the microstructural inhomogeneity and eutectic Mg<inf>2</inf>Si morphology in die-cast Al–Mg–Si alloys

    No full text
    The effects of varying Mg and Si levels on the microstructural inhomogeneity and eutectic Mg2Si morphology in die-cast Al–Mg–Si alloys have been investigated. It was found both Mg and Si additions decreased the microstructural inhomogeneity by producing more well distribution of primary α-Al and Al–Mg2Si eutectics, but had contrary effects on eutectic Mg2Si morphology. The increasing Mg level transformed eutectic Mg2Si from rod or lamellae to curved flake with larger eutectic spacing λ, while the increasing Si level promoted the formation of rod-like or lamellar eutectic Mg2Si with smaller λ. The reason for the above evolutions can be traced back to alloys’ solidification behaviour. Thermodynamic calculation indicates that both Mg and Si decrease the liquidus temperature and suppress the precipitation of coarse primary α-Al grains (which tend to agglomerate in centre zone of samples) during the first solidification in shot sleeve, thus reducing the microstructural inhomogeneity. Mg addition shifts the eutectic point to lower Mg2Si concentration and induces a slower eutectic growth rate, causing a lower Mg2Si volume fraction in Al–Mg2Si eutectic cell. On the contrary, Si addition increased the Mg2Si volume fraction in eutectic cell by raising the Mg2Si eutectic concentration and the eutectic growth rate. To minimize the interfacial energy, Al–Mg2Si eutectics with different Mg2Si volume fractions exhibit various morphologies. The tensile test results show that both Mg and Si improved the strength at the cost of ductility. However, due to the formation of fine Al–Mg2Si eutectics, Si induced less ductility sacrifice than Mg when achieving the same strength improvement
    corecore