240 research outputs found
TBA for non-perturbative moduli spaces
Recently, an exact description of instanton corrections to the moduli spaces
of 4d N=2 supersymmetric gauge theories compactified on a circle and Calabi-Yau
compactifications of Type II superstring theories was found. The equations
determining the instanton contributions turn out to have the form of
Thermodynamic Bethe Ansatz. We explore further this relation and, in
particular, we identify the contact potential of quaternionic string moduli
space with the free energy of the integrable system and the Kahler potential of
the gauge theory moduli space with the Yang-Yang functional. We also show that
the corresponding S-matrix satisfies all usual constraints of 2d integrable
models, including crossing and bootstrap, and derive the associated Y-system.
Surprisingly, in the simplest case the Y-system is described by the MacMahon
function relevant for crystal melting and topological strings.Comment: 25 pages, 1 figur
Nekrasov Functions and Exact Bohr-Sommerfeld Integrals
In the case of SU(2), associated by the AGT relation to the 2d Liouville
theory, the Seiberg-Witten prepotential is constructed from the Bohr-Sommerfeld
periods of 1d sine-Gordon model. If the same construction is literally applied
to monodromies of exact wave functions, the prepotential turns into the
one-parametric Nekrasov prepotential F(a,\epsilon_1) with the other epsilon
parameter vanishing, \epsilon_2=0, and \epsilon_1 playing the role of the
Planck constant in the sine-Gordon Shroedinger equation, \hbar=\epsilon_1. This
seems to be in accordance with the recent claim in arXiv:0908.4052 and poses a
problem of describing the full Nekrasov function as a seemingly straightforward
double-parametric quantization of sine-Gordon model. This also provides a new
link between the Liouville and sine-Gordon theories.Comment: 10 page
The matrix model version of AGT conjecture and CIV-DV prepotential
Recently exact formulas were provided for partition function of conformal
(multi-Penner) beta-ensemble in the Dijkgraaf-Vafa phase, which, if interpreted
as Dotsenko-Fateev correlator of screenings and analytically continued in the
number of screening insertions, represents generic Virasoro conformal blocks.
Actually these formulas describe the lowest terms of the q_a-expansion, where
q_a parameterize the shape of the Penner potential, and are exact in the
filling numbers N_a. At the same time, the older theory of CIV-DV prepotential,
straightforwardly extended to arbitrary beta and to non-polynomial potentials,
provides an alternative expansion: in powers of N_a and exact in q_a. We check
that the two expansions coincide in the overlapping region, i.e. for the lowest
terms of expansions in both q_a and N_a. This coincidence is somewhat
non-trivial, since the two methods use different integration contours:
integrals in one case are of the B-function (Euler-Selberg) type, while in the
other case they are Gaussian integrals.Comment: 27 pages, 1 figur
Matrix Model Conjecture for Exact BS Periods and Nekrasov Functions
We give a concise summary of the impressive recent development unifying a
number of different fundamental subjects. The quiver Nekrasov functions
(generalized hypergeometric series) form a full basis for all conformal blocks
of the Virasoro algebra and are sufficient to provide the same for some
(special) conformal blocks of W-algebras. They can be described in terms of
Seiberg-Witten theory, with the SW differential given by the 1-point resolvent
in the DV phase of the quiver (discrete or conformal) matrix model
(\beta-ensemble), dS = ydz + O(\epsilon^2) = \sum_p \epsilon^{2p}
\rho_\beta^{(p|1)}(z), where \epsilon and \beta are related to the LNS
parameters \epsilon_1 and \epsilon_2. This provides explicit formulas for
conformal blocks in terms of analytically continued contour integrals and
resolves the old puzzle of the free-field description of generic conformal
blocks through the Dotsenko-Fateev integrals. Most important, this completes
the GKMMM description of SW theory in terms of integrability theory with the
help of exact BS integrals, and provides an extended manifestation of the basic
principle which states that the effective actions are the tau-functions of
integrable hierarchies.Comment: 14 page
Small Polarons in Transition Metal Oxides
The formation of polarons is a pervasive phenomenon in transition metal oxide
compounds, with a strong impact on the physical properties and functionalities
of the hosting materials. In its original formulation the polaron problem
considers a single charge carrier in a polar crystal interacting with its
surrounding lattice. Depending on the spatial extension of the polaron
quasiparticle, originating from the coupling between the excess charge and the
phonon field, one speaks of small or large polarons. This chapter discusses the
modeling of small polarons in real materials, with a particular focus on the
archetypal polaron material TiO2. After an introductory part, surveying the
fundamental theoretical and experimental aspects of the physics of polarons,
the chapter examines how to model small polarons using first principles schemes
in order to predict, understand and interpret a variety of polaron properties
in bulk phases and surfaces. Following the spirit of this handbook, different
types of computational procedures and prescriptions are presented with specific
instructions on the setup required to model polaron effects.Comment: 36 pages, 12 figure
S-duality as a beta-deformed Fourier transform
An attempt is made to formulate Gaiotto's S-duality relations in an explicit
quantitative form. Formally the problem is that of evaluation of the Racah
coefficients for the Virasoro algebra, and we approach it with the help of the
matrix model representation of the AGT-related conformal blocks and Nekrasov
functions. In the Seiberg-Witten limit, this S-duality reduces to the Legendre
transformation. In the simplest case, its lifting to the level of Nekrasov
functions is just the Fourier transform, while corrections are related to the
beta-deformation. We calculate them with the help of the matrix model approach
and observe that they vanish for beta=1. Explicit evaluation of the same
corrections from the U_q(sl(2)) infinite-dimensional representation formulas
due to B.Ponsot and J.Teshner remains an open problem.Comment: 21 page
Anti-PD-1 increases the clonality and activity of tumor infiltrating antigen specific T cells induced by a potent immune therapy consisting of vaccine and metronomic cyclophosphamide
BACKGROUND: Future cancer immunotherapies will combine multiple treatments to generate functional immune responses to cancer antigens through synergistic, multi-modal mechanisms. In this study we explored the combination of three distinct immunotherapies: a class I restricted peptide-based cancer vaccine, metronomic cyclophosphamide (mCPA) and anti-PD-1 treatment in a murine tumor model expressing HPV16 E7 (C3). METHODS: Mice were implanted with C3 tumors subcutaneously. Tumor bearing mice were treated with mCPA (20 mg/kg/day PO) for seven continuous days on alternating weeks, vaccinated with HPV16 E7(49-57) peptide antigen formulated in the DepoVax (DPX) adjuvanting platform every second week, and administered anti-PD-1 (200 μg/dose IP) after each vaccination. Efficacy was measured by following tumor growth and survival. Immunogenicity was measured by IFN-γ ELISpot of spleen, vaccine draining lymph nodes and tumor draining lymph nodes. Tumor infiltration was measured by flow cytometry for CD8α(+) peptide-specific T cells and RT-qPCR for cytotoxic proteins. The clonality of tumor infiltrating T cells was measured by TCRβ sequencing using genomic DNA. RESULTS: Untreated C3 tumors had low expression of PD-L1 in vivo and anti-PD-1 therapy alone provided no protection from tumor growth. Treatment with DPX/mCPA could delay tumor growth, and tri-therapy with DPX/mCPA/anti-PD-1 provided long-term control of tumors. We found that treatment with DPX/mCPA/anti-PD-1 enhanced systemic antigen-specific immune responses detected in the spleen as determined by IFN-γ ELISpot compared to those in the DPX/mCPA group, but immune responses in tumor-draining lymph nodes were not increased. Although no increases in antigen-specific CD8α(+) TILs could be detected, there was a trend for increased expression of cytotoxic genes within the tumor microenvironment as well as an increase in clonality in mice treated with DPX/mCPA/anti-PD-1 compared to those with anti-PD-1 alone or DPX/mCPA. Using a library of antigen-specific CD8α(+) T cell clones, we found that antigen-specific clones were more frequently expanded in the DPX/mCPA/anti-PD-1 treated group. CONCLUSIONS: These results demonstrate how the efficacy of anti-PD-1 may be improved by combination with a potent and targeted T cell activating immune therapy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40425-016-0169-2) contains supplementary material, which is available to authorized users
High-intensity focused ultrasound: past, present, and future in neurosurgery
Since Lynn and colleagues first described the use of focused ultrasound (FUS) waves for intracranial ablation in 1942, many strides have been made toward the treatment of several brain pathologies using this novel technology. In the modern era of minimal invasiveness, high-intensity focused ultrasound (HIFU) promises therapeutic utility for multiple neurosurgical applications, including treatment of tumors, stroke, epilepsy, and functional disorders. Although the use of HIFU as a potential therapeutic modality in the brain has been under study for several decades, relatively few neuroscientists, neurologists, or even neurosurgeons are familiar with it. In this extensive review, the authors intend to shed light on the current use of HIFU in different neurosurgical avenues and its mechanism of action, as well as provide an update on the outcome of various trials and advances expected from various preclinical studies in the near future. Although the initial technical challenges have been overcome and the technology has been improved, only very few clinical trials have thus far been carried out. The number of clinical trials related to neurological disorders is expected to increase in the coming years, as this novel therapeutic device appears to have a substantial expansive potential. There is great opportunity to expand the use of HIFU across various medical and surgical disciplines for the treatment of different pathologies. As this technology gains recognition, it will open the door for further research opportunities and innovation
- …