34 research outputs found

    The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). INTERPRETATION: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Caloric Restriction Rejuvenates Skeletal Muscle Growth in Heart Failure With Preserved Ejection Fraction

    No full text
    Heart failure with preserved ejection fraction (HFpEF) is a major clinical problem, with limited treatments. HFpEF is characterized by a distinct, but poorly understood, skeletal muscle pathology, which could offer an alternative therapeutic target. In a rat model, we identified impaired myonuclear accretion as a mechanism for low myofiber growth in HFpEF following resistance exercise. Acute caloric restriction rescued skeletal muscle pathology in HFpEF, whereas cardiac therapies had no effect. Mechanisms regulating myonuclear accretion were dysregulated in patients with HFpEF. Overall, these findings may have widespread implications in HFpEF, indicating combined dietary with exercise interventions as a beneficial approach to overcome skeletal muscle pathology

    Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes

    No full text
    Background: Hansen’s disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease’s complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period. Results: Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae’s genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria. Conclusions: Our findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease’s global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy’s global history and can contribute to current models of M. leprae’s worldwide dissemination, including interspecies transmissions

    Cionodendron and related lithostrotionid genera from the Mississippian of eastern Australia: systematics, stratigraphy and evolution

    Full text link
    Denayer, J. & Webb, G.E., 26.2.2015. Cionodendron and related lithostrotionid genera from the Mississippian of eastern Australia: systematics, stratigraphy and evolution. Alcheringa 39, xxx–xxx. ISSN 0311-5518. The Mississippian colonial rugose corals of eastern Australia are taxonomically reviewed and assigned to formal genera. Their homeomorphy with the Eurasian genera Siphonodendron and Lithostrotion but also Heterostrotion resulted from parallel evolution within the Lithostrotionidae. Fasciculate species are reassigned to Cionodendron, as they share a robust columella, septotheca and two series of tabellae. Based on common characters, three species groups are recognized: the C. columen Group (characterized by the occurrence of parricidal and non-parricidal increase), the C. hallense Group (development of second-order lonsdaleoid dissepiments) and the C. arundineum Group (lacking the previous characters). Fourteen species are recognized, one being new (C. smithi sp. nov.) and two documented for the first time in the area. The oldest species are late Tournaisian in age, but the genus is most diverse in the middle–late Visean. Several morphological lineages are recognized within the three groups. The massive species are classified in the newly erected genus Australastraea that likely evolved from one of the early species of Cionodendron in the early Visean. Eleven species were identified, two being newly described (A. arcifera, sp. nov., A. carinata sp. nov.) and two others documented for the first time. Australastraea is characterized by a septotheca that is commonly discontinuous, conferring a pseudo-cerioid or astreoid habit. Two morphological groups are identified: the A. wilkinsoni Group (small corallites with simple narrow dissepimentarium) and the A. columnare Group (large corallites with complex dissepimentarium). The small fasciculate species previously referred to Lithostrotion williamsi are here reassigned to the new genus Pickettodendron, which differs from Cionodendron by the lack of minor septa and presence of a complete tabularium but is, nevertheless, relatively closely related to that genus. Pickettodendron is represented by three species, one being new (P. nudum sp. nov.), and is restricted to the early (–‘middle’) Tournaisian. A polyphyletic origin of the Cionodendroninae is considered, with Cionodendron and Australastraea originated in a first species of Amygdalophyllum and Pickettodendron originated in a second one. The biostratigraphic value of the Cionodendroninae is currently limited owing to the poor stratigraphic coverage of appropriate facies but correlations were made possible by the identification of A. columellaris and C. consanguineum in the early Visean of New South Wales and Queensland, and A. columnare and A. sp. in the middle–late Visean of both states. The Cionodendroninae assemblages of eastern Australia are strongly endemic and possibly represent one of the scarce remains of the Panthalassa Province. Julien Denayer [[email protected]], Evolution and Diversity Dynamics Lab, Geology Department, University of Liège, B18, Allée du Six-Août, Sart Tilman, B-4000 Liège, Belgium; Gregory E. Webb [[email protected]], Integrated Palaeoenvironmental Research Group, School of Earth Sciences, University of Queensland, QLD 4072, St-Lucia, Australia
    corecore