3 research outputs found

    Heparan sulfates in the lung: structure, diversity, and role in pulmonary emphysema.

    No full text
    Contains fulltext : 88387.pdf (publisher's version ) (Closed access)There is an emerging interest in the extracellular matrix (ECM) of the lung, especially in the role it plays in development and disease. There is a rapid change from the classical view of the ECM as a supporting structure towards a view of the ECM as a regulatory entity with profound effects on proliferation, migration, and differentiation of pulmonary cells. In the ECM, a variety of molecules is present in a highly organized pattern. Next to the abundant fiber-forming molecules such as collagens and elastin, a large number of less abundant molecules are part of the ECM, including proteoglycans. In this review, we will focus on one class of proteoglycans, the heparan sulfate proteoglycans. We will particularly address the structure, biosynthesis, and function of their saccharide moiety, the heparan sulfates, including their role in development and (patho)physiology.1 juni 201

    Synthesis of anticoagulantly active heparan sulfate proteoglycans by glomerular epithelial cells involves multiple 3-O-sulfotransferase isoforms and a limiting precursor pool.

    No full text
    Endothelial and other select cell types synthesize a subpopulation of heparan sulfate (HS) proteoglycans (HSPGs), anticoagulant HSPGs (aHSPGs) that bear aHS-HS chains with the cognate 3-O-sulfated pentasaccharide motif that can bind and activate anti-thrombin (AT). Endothelial cells regulate aHSPG production by limiting levels of HS 3-O-sulfotransferase-1 (3-OST-1), which modifies a non-limiting pool of aHS-precursors. By probing kidney cryosections with (125)I-AT and fluorescently tagged AT we found that the glomerular basement membrane contains aHSPGs, with the staining pattern implicating synthesis by glomerular epithelial cells (GECs). Indeed, cultured GECs synthesized aHS with high AT affinity that was comparable with the endothelial product. Disaccharide analyses of human GEC (hGEC) HS in conjunction with transcript analyses revealed that hGECs express predominantly 3-OST-1 and 3-OST-3(A). aHS production has not been previously examined in cells expressing multiple 3-OST isoforms. This unusual situation appears to involve novel mechanisms to regulate aHS production, as HS structural analyses suggest hGECs exhibit excess levels of 3-OST-1 and an extremely limiting pool of aHS-precursor. A limiting aHS-precursor pool may serve to minimize aHS synthesis by non-3-OST-1 isoforms. Indeed, we show that high in vitro levels of 3-OST-3(A) can efficiently generate aHS. Non-3-OST-1 isoforms can generate aHS in vivo, as the probing of kidney sections from 3-OST-1-deficient mice revealed GEC synthesis of aHSPGs. Surprisingly, Hs3st1(-/-) kidney only expresses 3-OST isoforms having a low specificity for aHS synthesis. Thus, our analyses reveal a cell type that expresses multiple 3-OST isoforms and produces minimal amounts of aHS-precursor. In part, this mechanism should prevent aHS overproduction by non-3-OST-1 isoforms. Such a role may be essential, as 3-OST isoforms that have a low specificity for aHS synthesis can generate substantial levels of aHSPGs in vivo
    corecore