18 research outputs found

    Vortices and dynamics in trapped Bose-Einstein condensates

    Full text link
    I review the basic physics of ultracold dilute trapped atomic gases, with emphasis on Bose-Einstein condensation and quantized vortices. The hydrodynamic form of the Gross-Pitaevskii equation (a nonlinear Schr{\"o}dinger equation) illuminates the role of the density and the quantum-mechanical phase. One unique feature of these experimental systems is the opportunity to study the dynamics of vortices in real time, in contrast to typical experiments on superfluid 4^4He. I discuss three specific examples (precession of single vortices, motion of vortex dipoles, and Tkachenko oscillations of a vortex array). Other unusual features include the study of quantum turbulence and the behavior for rapid rotation, when the vortices form dense regular arrays. Ultimately, the system is predicted to make a quantum phase transition to various highly correlated many-body states (analogous to bosonic quantum Hall states) that are not superfluid and do not have condensate wave functions. At present, this transition remains elusive. Conceivably, laser-induced synthetic vector potentials can serve to reach this intriguing phase transition.Comment: Accepted for publication in Journal of Low Temperature Physics, conference proceedings: Symposia on Superfluids under Rotation (Lammi, Finland, April 2010

    The Transition to a Giant Vortex Phase in a Fast Rotating Bose-Einstein Condensate

    Get PDF
    We study the Gross-Pitaevskii (GP) energy functional for a fast rotating Bose-Einstein condensate on the unit disc in two dimensions. Writing the coupling parameter as 1 / \eps^2 we consider the asymptotic regime \eps \to 0 with the angular velocity Ω\Omega proportional to (\eps^2|\log\eps|)^{-1} . We prove that if \Omega = \Omega_0 (\eps^2|\log\eps|)^{-1} and Ω0>2(3π)1 \Omega_0 > 2(3\pi)^{-1} then a minimizer of the GP energy functional has no zeros in an annulus at the boundary of the disc that contains the bulk of the mass. The vorticity resides in a complementary `hole' around the center where the density is vanishingly small. Moreover, we prove a lower bound to the ground state energy that matches, up to small errors, the upper bound obtained from an optimal giant vortex trial function, and also that the winding number of a GP minimizer around the disc is in accord with the phase of this trial function.Comment: 52 pages, PDFLaTex. Minor corrections, sign convention modified. To be published in Commun. Math. Phy

    Vortex Rings in Fast Rotating Bose-Einstein Condensates

    Full text link
    When Bose-Eintein condensates are rotated sufficiently fast, a giant vortex phase appears, that is the condensate becomes annular with no vortices in the bulk but a macroscopic phase circulation around the central hole. In a former paper [M. Correggi, N. Rougerie, J. Yngvason, {\it arXiv:1005.0686}] we have studied this phenomenon by minimizing the two dimensional Gross-Pitaevskii energy on the unit disc. In particular we computed an upper bound to the critical speed for the transition to the giant vortex phase. In this paper we confirm that this upper bound is optimal by proving that if the rotation speed is taken slightly below the threshold there are vortices in the condensate. We prove that they gather along a particular circle on which they are evenly distributed. This is done by providing new upper and lower bounds to the GP energy.Comment: to appear in Archive of Rational Mechanics and Analysi

    The excitation spectrum for weakly interacting bosons in a trap

    Full text link
    We investigate the low-energy excitation spectrum of a Bose gas confined in a trap, with weak long-range repulsive interactions. In particular, we prove that the spectrum can be described in terms of the eigenvalues of an effective one-particle operator, as predicted by the Bogoliubov approximation.Comment: LaTeX, 32 page

    Rapidly Rotating Fermions in an Anisotropic Trap

    Get PDF
    We consider a cold gas of non-interacting fermions in a two dimensional harmonic trap with two different trapping frequencies ωxωy\omega_x \leq \omega_y, and discuss the effect of rotation on the density profile. Depending on the rotation frequency Ω\Omega and the trap anisotropy ωy/ωx\omega_y/\omega_x, the density profile assumes two qualitatively different shapes. For small anisotropy (ωy/ωx1+4Ω2/ωx2\omega_y/\omega_x \ll \sqrt{1+4 \Omega^2/\omega_x^2}), the density consists of elliptical plateaus of constant density, corresponding to Landau levels and is well described by a two dimensional local density approximation. For large anisotropy (ωy/ωx1+4Ω2/ωx2\omega_y/\omega_x \gg \sqrt{1+4 \Omega^2/\omega_x^2}), the density profile is Gaussian in the strong confining direction and semicircular with prominent Friedel oscillations in the weak direction. In this regime, a one dimensional local density approximation is well suited to describe the system. The crossover between the two regimes is smooth where the step structure between the Landau level edges turn into Friedel oscillations. Increasing the temperature causes the step structure or the Friedel oscillations to wash out leaving a Boltzmann gas density profile.Comment: 14 pages, 7 figure

    Vortex lattice of a Bose-Einstein Condensate in a rotating anisotropic trap

    Get PDF
    We study the vortex lattices in a Bose-Einstein Condensate in a rotating anisotropic harmonic trap. We first investigate the single particle wavefunctions obtained by the exact solution of the problem and give simple expressions for these wavefunctions in the small anisotropy limit. Depending on the strength of the interactions, a few or a large number of vortices can be formed. In the limit of many vortices, we calculate the density profile of the cloud and show that the vortex lattice stays triangular. We also find that the vortex lattice planes align themselves with the weak axis of the external potential. For a small number of vortices, we numerically solve the Gross-Pitaevskii equation and find vortex configurations that are very different from the vortex configurations in an axisymmetric rotating trap.Comment: 15 pages,4 figure

    Rapidly Rotating Atomic Gases

    Full text link
    This article reviews developments in the theory of rapidly rotating degenerate atomic gases. The main focus is on the equilibrium properties of a single component atomic Bose gas, which (at least at rest) forms a Bose-Einstein condensate. Rotation leads to the formation of quantized vortices which order into a vortex array, in close analogy with the behaviour of superfluid helium. Under conditions of rapid rotation, when the vortex density becomes large, atomic Bose gases offer the possibility to explore the physics of quantized vortices in novel parameter regimes. First, there is an interesting regime in which the vortices become sufficiently dense that their cores -- as set by the healing length -- start to overlap. In this regime, the theoretical description simplifies, allowing a reduction to single particle states in the lowest Landau level. Second, one can envisage entering a regime of very high vortex density, when the number of vortices becomes comparable to the number of particles in the gas. In this regime, theory predicts the appearance of a series of strongly correlated phases, which can be viewed as {\it bosonic} versions of fractional quantum Hall states. This article describes the equilibrium properties of rapidly rotating atomic Bose gases in both the mean-field and the strongly correlated regimes, and related theoretical developments for Bose gases in lattices, for multi-component Bose gases, and for atomic Fermi gases. The current experimental situation and outlook for the future are discussed in the light of these theoretical developments.Comment: Published version + minor correction

    Dimers, Effective Interactions, and Pauli Blocking Effects in a Bilayer of Cold Fermionic Polar Molecules

    Full text link
    We consider a bilayer setup with two parallel planes of cold fermionic polar molecules when the dipole moments are oriented perpendicular to the planes. The binding energy of two-body states with one polar molecule in each layer is determined and compared to various analytic approximation schemes in both coordinate- and momentum-space. The effective interaction of two bound dimers is obtained by integrating out the internal dimer bound state wave function and its robustness under analytical approximations is studied. Furthermore, we consider the effect of the background of other fermions on the dimer state through Pauli blocking, and discuss implications for the zero-temperature many-body phase diagram of this experimentally realizable system.Comment: 18 pages, 10 figures, accepted versio

    Finite vortex numbers and symmetric vortex structures in a rotating trapped Fermi gas in the BCS-BEC crossover

    No full text
    The ground state of a three-dimensional (3D) rotating trapped superfluid Fermi gas in the BCS-BEC crossover is mapped to finite Nv-body vortex states by a simple ansatz. The total vortex energy is measured from the ground-state energy of the system in the absence of the vortices. The vortex state is stable since the vortex potential and rotation energies are attractive while the vortex kinetic energy and interaction between vortices are repulsive. By combining the analytical and numerical works for the minimal vortex energy, the 2D configurations of Nv vortices are studied by taking into account of the finite size effects both on xy-plane and on z-direction. The calculated vortex numbers as a function of the interaction strength are appropriate to the renew experimental results by Zwierlein in [High-temperature superfluidity in a ultracold Fermi gas, Ph.D. thesis, Massachusetts Institute of Technology, 2006]. The numerical results show that there exist two types of vortex structures: the trap center is occupied and unoccupied by a vortex, even in the case of Nv < 10 with regular polygon and in the case of Nv ≥ 10 with finite triangle lattice. The rotation frequency dependent vortex numbers with different interaction strengths are also discussed
    corecore