5 research outputs found

    Thermal conductivity enhancement of Al

    No full text
    Nanolubricant been introduced in compressor might improve the performance of automotive air conditioning system. Prior testing of the nanolubricant enhancement performance, thermal conductivity of Al2O3/PAG and SiO2/PAG nanolubricants has to be investigated and compared. Al2O3 and SiO2 nanoparticles first been dispersed in Polyalkylene Glycol (PAG) for different volume concentrations. KD2 Pro was used in determining the thermal conductivity of the nanolubricant. The experimental results showed that the thermal conductivity of the Al2O3/PAG and SiO2/PAG nanolubricants increased by volume concentration but decreased by temperature. The highest thermal conductivity was observed to be 0.153 W.(m · K)−1 and enhancement of 1.04 times higher than the base lubricant for Al2O3 with 1.0 volume concentration. Finally regression equations were developed in order to estimate the thermal conductivity for these nanolubricants

    Thermal conductivity enhancement of Al2O3 and SiO2 nanolubricants for application in automotive air conditioning (AAC) system

    No full text
    Nanolubricant been introduced in compressor might improve the performance of automotive air conditioning system. Prior testing of the nanolubricant enhancement performance, thermal conductivity of Al2O3/PAG and SiO2/PAG nanolubricants has to be investigated and compared. Al2O3 and SiO2 nanoparticles first been dispersed in Polyalkylene Glycol (PAG) for different volume concentrations. KD2 Pro was used in determining the thermal conductivity of the nanolubricant. The experimental results showed that the thermal conductivity of the Al2O3/PAG and SiO2/PAG nanolubricants increased by volume concentration but decreased by temperature. The highest thermal conductivity was observed to be 0.153 W.(m · K)−1 and enhancement of 1.04 times higher than the base lubricant for Al2O3 with 1.0 volume concentration. Finally regression equations were developed in order to estimate the thermal conductivity for these nanolubricants

    Thermo-physical properties of metal oxides composite Nanolubricants / N.N.M. Zawawi...[et al.]

    No full text
    Thermal conductivity and viscosity of the different combination of composite nanolubricants for 0.02% volume concentrations at a temperature range of 30 to 80 oC were investigated. Al2O3, SiO2 and TiO2 nanoparticles were dispersed in the Polyalkylene Glycol (PAG 46) lubricant using the two-step method of preparation. Thermal conductivity and viscosity were measured using KD2 Pro Thermal Properties Analyzer and LVDV-III Rheometer, respectively. The result shows that the thermal conductivity and viscosity of composite nanolubricants decrease with temperature. Composite nanolubricants behaved as Newtonian in the range of the temperatures studied. The most optimum combination of composite nanolubricant is Al2O3-SiO2/PAG as it yields higher enhancement in thermal conductivity but lower in viscosity

    Experimental investigation of air-conditioning electrical compressor using binary TiO2–SiO2 polyol-ester nanolubricants

    No full text
    As electric vehicles (EVs) continue to replace conventional gasoline vehicles, maintaining thermal comfort within the car requires additional energy to operate the automotive air-conditioning (AAC) system. This work aims to optimise the electrically driven compressor (EDC) system utilising polyol-ester (POE)-based binary nanolubricants to enhance performance and minimise the size of the EV battery and AAC components. A binary nanolubricant was formulated using a two-step method of formulation. The TiO2–SiO2/POE binary nanolubricant was prepared at different volume concentrations ranging from 0.01 to 0.1 %. The experiment was conducted for the 1200–3840 rpm compressor speed with different initial refrigerant charges between 120 and 160 g. The heat absorption rose by up to 44.2 % while utilising the binary nanolubricant at a volume concentration of 0.03 %. The coefficient of performance (COP) reached its maximum value of 2.43 at a refrigerant charge of 160 g and compressor speed of 1860 rpm. Furthermore, the binary nanolubricant significantly reduced the expansion valve discharge temperature, exhibiting a substantial decrease of up to 51.6 %. The highest COP increment, up to 23.4 %, was achieved at a volume concentration of 0.03 %. Hence, it is recommended to utilise 0.03 % TiO2–SiO2/POE binary nanolubricant to achieve optimal performance in the AAC-EDC system
    corecore