48 research outputs found
Control system in the technological electron linacs
In recent years in the Science Research Complex "Accelerator" in NSC KIPT the power current technological electron linacs are developed and put into operation. Their energy varies from 8 MeV to 30 MeV, the pulse current does not exceed 1A and the operating frequency is 150-300 Hz. The one- section linacs, KUT and LU-10, and two- section linac EPOS are used primarily for technological aims. The technological object zone irradiated by accelerated electrons is created with the magnet scanning syste
Apoptotic endonuclease endog regulates alternative splicing of human telomerase catalytic subunit htert
Human telomerase catalytic subunit hTERT is subjected to alternative splicing results in loss of its function and leads to decrease of telomerase activity. However, very little is known about the mechanism of hTERT pre-mRNA alternative splicing. Apoptotic endonuclease EndoG is known to participate this process. The aim of this study was to determine the role of EndoG in regulation of hTERT alternative splicing. Increased expression of β-deletion splice variant was determined during EndoG over-expression in CaCo-2 cell line, after EndoG treatment of cell cytoplasm and nuclei and after nuclei incubation with EndoG digested cell RNA. hTERT alternative splicing was induced by 47-mer RNA oligonucleotide in naked nuclei and in cells after transfection. Identified long non-coding RNA, that is the precursor of 47-mer RNA oligonucleotide. Its size is 1754 nucleotides. Based on the results the following mechanism was proposed. hTERT pre-mRNA is transcribed from coding DNA strand while long non-coding RNA is transcribed from template strand of hTERT gene. EndoG digests long non-coding RNA and produces 47-mer RNA oligonucleotide complementary to hTERT pre-mRNA exon 8 and intron 8 junction place. Interaction of 47-mer RNA oligonucleotide and hTERT pre-mRNA causes alternative splicing
Apoptotic endonuclease EndoG inhibits telomerase activity and induces malignant transformation of human CD4+ T cells
Telomerase activity is regulated by an alternative splicing of mRNA of the telomerase catalytic subunit hTERT (human telomerase reverse transcriptase). Increased expression of the inactive spliced hTERT results in inhibition of telomerase activity. Little is known about the mechanism of hTERT mRNA alternative splicing. This study was aimed at determining the effect of an apoptotic endonuclease G (EndoG) on alternative splicing of hTERT and telomerase activity in CD4+ human T lymphocytes. Overexpression of EndoG in CD4+ T cells downregulated the expression of the active fulllength hTERT variant and upregulated the inactive alternatively spliced variant. Reduction of full-length hTERT levels caused downregulation of the telomerase activity, critical telomere shortening during cell division that converted cells into the replicative senescence state, activation of apoptosis, and finally cell death. Some cells survive and undergo a malignant transformation. Transformed cells feature increased telomerase activity and proliferative potential compared to the original CD4+ T cells. These cells have phenotype of T lymphoblastic leukemia cells and can form tumors and cause death in experimental mice. © 2017, Pleiades Publishing, Ltd
Intracellular localization of apoptotic endonuclease EndoG and splice-variants of telomerase catalytic subunit hTERT
The activity of telomerase catalytic subunit hTERT (human telomerase reverse transcriptase) can be regulated by alternative splicing of its mRNA. The mechanism of hTERT splicing is not understood in detail. Apoptotic endonuclease EndoG is known to participate in this process. In the present work, the intracellular colocalization and mRNA levels of EndoG and hTERT splice-variants in normal and apoptotic cancer cells were studied. We found that the development of apoptosis increased the expression of EndoG and changed the ratio of hTERT splice-variants, which decreased the telomerase activity in the cells. The development of apoptosis was accompanied by changes in the amount of mRNA and in the localization of EndoG and hTERT splice-variants in the cytoplasm, nuclei, and mitochondria of the cells. The suppression of EndoG expression using RNA interference prevented induction of the α+β–splice-variant of hTERT and inhibition of the telomerase activity. A high degree of the intracellular colocalization of EndoG and hTERT was shown. The changes in the expression and localization of EndoG corresponded with changes in the amount and localization of hTERT splice-variants. These data confirm the participation of EndoG in the alternative splicing of mRNA of the telomerase catalytic subunit and in regulation of the telomerase activity. © 2017, Pleiades Publishing, Ltd
Intracellular localization of apoptotic endonuclease EndoG and splice-variants of telomerase catalytic subunit hTERT
The activity of telomerase catalytic subunit hTERT (human telomerase reverse transcriptase) can be regulated by alternative splicing of its mRNA. The mechanism of hTERT splicing is not understood in detail. Apoptotic endonuclease EndoG is known to participate in this process. In the present work, the intracellular colocalization and mRNA levels of EndoG and hTERT splice-variants in normal and apoptotic cancer cells were studied. We found that the development of apoptosis increased the expression of EndoG and changed the ratio of hTERT splice-variants, which decreased the telomerase activity in the cells. The development of apoptosis was accompanied by changes in the amount of mRNA and in the localization of EndoG and hTERT splice-variants in the cytoplasm, nuclei, and mitochondria of the cells. The suppression of EndoG expression using RNA interference prevented induction of the α+β–splice-variant of hTERT and inhibition of the telomerase activity. A high degree of the intracellular colocalization of EndoG and hTERT was shown. The changes in the expression and localization of EndoG corresponded with changes in the amount and localization of hTERT splice-variants. These data confirm the participation of EndoG in the alternative splicing of mRNA of the telomerase catalytic subunit and in regulation of the telomerase activity. © 2017, Pleiades Publishing, Ltd
Alternative splicing of telomerase catalytic subunit hTERT generated by apoptotic endonuclease EndoG induces human CD4+ T cell death
Telomerase activity is regulated by alternative splicing of its catalytic subunit human Telomerase Reverse Transcriptase (hTERT) mRNA. Induction of a non-active spliced hTERT leads to inhibition of telomerase activity. However, very little is known about the mechanism of hTERT mRNA alternative splicing. The aim of this study was to determine the role of the apoptotic endonuclease EndoG in alternative splicing of hTERT and telomerase activity. A strong correlation was identified between EndoG expression levels and hTERT splice variants in human CD4+ and CD8+ T lymphocytes. Overexpression of EndoG in CD4+ T cells down-regulated the expression of the active full-length hTERT variant and up-regulated expression of the non-active spliced variant. A reduction in full-length hTERT transcripts down-regulated telomerase activity. Long-term in vitro cultivation of EndoG-overexpressing CD4+ T cells led to dramatically shortened telomeres, conversion of cells into a replicative senescence state, and activation of the BCL2/BAX-associated apoptotic pathway finally leading to cell death. These data indicated the participation of EndoG in alternative mRNA splicing of the telomerase catalytic subunit hTERT, regulation of telomerase activity and determination of cell fate. © 2017 Elsevier Gmb
Apoptotic endonuclease EndoG inhibits telomerase activity and induces malignant transformation of human CD4+ T cells
Telomerase activity is regulated by an alternative splicing of mRNA of the telomerase catalytic subunit hTERT (human telomerase reverse transcriptase). Increased expression of the inactive spliced hTERT results in inhibition of telomerase activity. Little is known about the mechanism of hTERT mRNA alternative splicing. This study was aimed at determining the effect of an apoptotic endonuclease G (EndoG) on alternative splicing of hTERT and telomerase activity in CD4+ human T lymphocytes. Overexpression of EndoG in CD4+ T cells downregulated the expression of the active fulllength hTERT variant and upregulated the inactive alternatively spliced variant. Reduction of full-length hTERT levels caused downregulation of the telomerase activity, critical telomere shortening during cell division that converted cells into the replicative senescence state, activation of apoptosis, and finally cell death. Some cells survive and undergo a malignant transformation. Transformed cells feature increased telomerase activity and proliferative potential compared to the original CD4+ T cells. These cells have phenotype of T lymphoblastic leukemia cells and can form tumors and cause death in experimental mice. © 2017, Pleiades Publishing, Ltd
Cisplatin-induced apoptotic endonuclease EndoG inhibits telomerase activity and causes malignant transformation of human CD4+ T lymphocytes
Alternative splicing of telomerase catalytic subunit hTERT pre-mRNA (human Telomerase Reverse Transcriptase) regulates telomerase activity. Increased expression of non-active splice variant hTERT results in inhibition of telomerase. Apoptotic endonuclease EndoG is known to participate in hTERT alternative splicing. Expression of EndoG can be induced in response to DNA damages. The aim of this study was to determine the ability of a DNA-damaging compound, cisplatin, to induce EndoG and its influence on alternative splicing of hTERT and telomerase activity in human CD4+ Т lymphocytes. Overexpression of EndoG in CD4+ T cells downregulated expression of the active full-length hTERT variant and upregulated its non-active spliced variant. Reduction of full-length hTERT caused downregulation of telomerase activity, shortening of telomeres length during cell divisions, converting cells to the replicative senescence state, activation of apoptosis and finally cell death. Few cells survived and underwent malignant transformation. Transformed cells have increased telomerase activity and proliferative potential compare to initial CD4+ T cells. These cells have phenotype of T lymphoblastic leukemic cells and are able to form tumors and cause death in experimental mice. © 2017, Pleiades Publishing, Ltd