6 research outputs found
Characterisation of a collection of Streptococcus pneumoniae isolates from patients suffering from acute exacerbations of chronic bronchitis: in vitro susceptibility to antibiotics and biofilm formation in relation to antibiotic efflux and serotypes...
The correlation between Streptococcus pneumoniae serotypes, biofilm production, antibiotic susceptibility and drug efflux in isolates from patients suffering from acute exacerbations of chronic bronchitis (AECB) remains largely unexplored. Using 101 isolates collected from AECB patients for whom partial (n=51) or full (n=50) medical details were available, we determined serotypes (ST)/serogroups (SG) (Quellung reaction), antibiotic susceptibility patterns [MIC (microdilution) using EUCAST and CLSI criteria] and ability to produce biofilm in vitro (10-day model; crystal violet staining). The majority of patients were 55-75 years old and <5% were vaccinated against S. pneumoniae. Moreover, 54% showed high severity scores (GOLD 3-4), and comorbidities were frequent including hypertension (60%), cancer (24%) and diabetes (20%). Alcohol and/or tobacco dependence was >30%. Isolates of SG6-11-15-23, known for large biofilm production and causing chronic infections, were the most prevalent (>15% each), but other isolates also produced biofilm (SG9-18-22-27 and ST8-20 being most productive), except SG7, SG29 and ST5 (<2% of isolates each). Resistance (EUCAST breakpoints) was 8-13% for amoxicillin and cefuroxime, 35-39% for macrolides, 2-8% for fluoroquinolones and 2% for telithromycin. ST19A isolates showed resistance to all antibiotics, ST14 to all except moxifloxacin, and SG9 and SG19 to all except telithromycin, moxifloxacin and ceftriaxone (SG19 only). Solithromycin and telithromycin MICs were similar. No correlation was observed between biofilm production and MIC or efflux (macrolides, fluoroquinolones). S. pneumoniae serotyping may improve AECB treatment by avoiding antibiotics with predictable low activity, but it is not predictive of biofilm production</p
Standardizing nomenclature in regional anesthesia: an ASRA-ESRA Delphi consensus study of upper and lower limb nerve blocks.
Inconsistent nomenclature and anatomical descriptions of regional anesthetic techniques hinder scientific communication and engender confusion; this in turn has implications for research, education and clinical implementation of regional anesthesia. Having produced standardized nomenclature for abdominal wall, paraspinal and chest wall regional anesthetic techniques, we aimed to similarly do so for upper and lower limb peripheral nerve blocks.
We performed a three-round Delphi international consensus study to generate standardized names and anatomical descriptions of upper and lower limb regional anesthetic techniques. A long list of names and anatomical description of blocks of upper and lower extremities was produced by the members of the steering committee. Subsequently, two rounds of anonymized voting and commenting were followed by a third virtual round table to secure consensus for items that remained outstanding after the first and second rounds. As with previous methodology, strong consensus was defined as ≥75% agreement and weak consensus as 50%-74% agreement.
A total of 94, 91 and 65 collaborators participated in the first, second and third rounds, respectively. We achieved strong consensus for 38 names and 33 anatomical descriptions, and weak consensus for five anatomical descriptions. We agreed on a template for naming peripheral nerve blocks based on the name of the nerve and the anatomical location of the blockade and identified several areas for future research.
We achieved consensus on nomenclature and anatomical descriptions of regional anesthetic techniques for upper and lower limb nerve blocks, and recommend using this framework in clinical and academic practice. This should improve research, teaching and learning of regional anesthesia to eventually improve patient care