16 research outputs found
An infrared view of (candidate accretion) disks around massive young stars
Near-infrared surveys of high-mass star-forming regions start to shed light onto their stellar content. A particular class of objects found in these regions, the so-called massive Young Stellar Objects (YSOs) are surrounded by dense circumstellar material. Several near- and mid-infrared diagnostic tools are used to infer the physical characteristics and geometry of this circumstellar matter. Near-infrared hydrogen emission lines provide evidence for a disk-wind. The profiles of the first overtone of the CO band-heads, originating in the inner 10 AU from the central star, are well fitted assuming a Keplerian rotating disk. The mid-infrared spectral energy distribution requires the presence of a more extended envelope containing dust at a temperature of about 200 K. CRIRES observations of CO fundamental absorption lines confirm the presence of a cold envelope. We discuss the evolutionary status of these objects
The Formation and Evolution of Massive Stellar Clusters in IC 4662
We present a multiwavelength study of the formation of massive stellar
clusters, their emergence from cocoons of gas and dust, and their feedback on
surrounding matter. Using data that span from radio to optical wavelengths,
including Spitzer and Hubble ACS observations, we examine the population of
young star clusters in the central starburst region of the irregular Wolf-Rayet
galaxy IC 4662. We model the radio-to-IR spectral energy distributions of
embedded clusters to determine the properties of their HII regions and dust
cocoons (sizes, masses, densities, temperatures), and use near-IR and optical
data with mid-IR spectroscopy to constrain the properties of the embedded
clusters themselves (mass, age, extinction, excitation, abundance). The two
massive star-formation regions in IC 4662 are excited by stellar populations
with ages of ~ 4 million years and masses of ~ 3 x 10^5 M_sun (assuming a
Kroupa IMF). They have high excitation and sub-solar abundances, and they may
actually be comprised of several massive clusters rather than the single
monolithic massive compact objects known as Super Star Clusters (SSCs). Mid-IR
spectra reveal that these clusters have very high extinctions, A_V ~ 20-25 mag,
and that the dust in IC 4662 is well-mixed with the emitting gas, not in a
foreground screen.Comment: 7 pages, 11 figures, to appear in proceedings of the conference
"Young Massive Star Clusters: Initial Conditions and Environments ", held in
Granada, Spain, September 200
RICORS2040 : The need for collaborative research in chronic kidney disease
Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true
Scheduling opportunities for asymmetrically reliable caches
We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of O main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on non-LTE line blanketed atmosphere models with stellar winds calculated using the CMFGEN code of \cite{hillier98}. We draw the following conclusions. First, we find that the total number of Lyman photons emitted is almost independent of line blanketing effects and metallicity for a given effective temperature. This is because the flux that is blocked by the forest of metal lines at lambda < 600 Å is redistributed mainly within the Lyman continuum. Second, the spectral type, as defined by the ratio of the equivalent widths of He I lambda4471 and He II lambda4542, is shown to depend noticeably on the microturbulent velocity in the atmosphere, on metallicity and, within the luminosity class of dwarfs, on gravity. Third, we confirm the decrease in Teff for a given spectral type due to the inclusion of line blanketing recently found by e.g. \citet{martins02}. Finally, we find that the SED below ~450 Å is highly dependent on metallicity. This is reflected in the behaviour of nebular fine-structure line ratios such as [Ne III]/[Ne II] 15.5/12.8 and [Ar III]/[Ar II] 9.0/7.0 mum. This dependence complicates the use of these nebular ratios as diagnostic tools for the effective temperature determination of the ionizing stars in H II regions and for age dating of starburst regions in galaxies
A spatial study of the mid-IR emission features in four Herbig Ae/Be stars
Context. Infrared (IR) spectroscopy and imaging provide a prime tool to study the characteristics of polycyclic aromatic hydrocarbon (PAH) molecules and the mineralogy in regions of star formation. Herbig Ae/Be stars are known to have varying amounts of natal cloud material present in their vicinity. Aims. Our aim is to study the characteristics of the mid-IR emission originating in Herbig Ae/Be stars, especially the extent of the emission and how this relates to the (proto-) stellar characteristics. Methods. Today's powerful ground-and space-based telescopes provide images and spectra at unprecedented spectral and spatial resolution. We analyse the images and spectra from four Herbig Ae/Be stars (IRAS 06084-0611, CD-42 11721, TY CrA, and HD176386), as obtained with TIMMI2 on the ESO 3.6 m telescope and VISIR on the VLT. These observations are supplemented with data from ISO-SWS and Spitzer-IRAC. Results. We find evidence for large-scale structure and extended emission in all four sources, except for HD176386, which only shows silicate emission, all sources show PAH emission in their spectra. In addition, a spatially resolved silicate and PAH spectrum could be extracted for TY CrA. Conclusions. The variety in emission scales distinguishes two classes. In the first, the morphology and spectral characteristics resemble those of reflection nebulae. In the second, the characteristics are in-line with Herbig A stars. This separation simply reflects a difference in stellar characteristics (e. g. luminosity). In Herbig B stars, dust emission from the surroundings dominates, where for Herbig A stars, the disk dominates the emission. In this scheme, IRAS 06084-0611 and CD-42 11721 resemble reflection nebulae and HD176386 a more typical Herbig Ae/Be star. TY CrA shows characteristics common to both genuine reflection nebulae and Herbig B stars. We propose a geometry for TY CrA, with most notably, a similar to 70 AU inner gap in the 340 AU circumtertiary disk cleared by a fourth stellar companion