318 research outputs found
Search for heavy diboson resonances in semileptonic final states in pp collisions at √s=13 TeV with the ATLAS detector
Indexación ScopusThis paper reports on a search for heavy resonances decaying into WW, ZZ or WZ using proton–proton collision data at a centre-of-mass energy of s=13 TeV. The data, corresponding to an integrated luminosity of 139 fb 1, were recorded with the ATLAS detector from 2015 to 2018 at the Large Hadron Collider. The search is performed for final states in which one W or Z boson decays leptonically, and the other W boson or Z boson decays hadronically. The data are found to be described well by expected backgrounds. Upper bounds on the production cross sections of heavy scalar, vector or tensor resonances are derived in the mass range 300–5000 GeV within the context of Standard Model extensions with warped extra dimensions or including a heavy vector triplet. Production through gluon–gluon fusion, Drell–Yan or vector-boson fusion are considered, depending on the assumed model. © 2020, CERN for the benefit of the ATLAS collaboration.https://link-springer-com.recursosbiblioteca.unab.cl/article/10.1140/epjc/s10052-020-08554-
Search for new resonances in mass distributions of jet pairs using 139 fb −1 of pp collisions at √s = 13 TeV with the ATLAS detector
A search for new resonances decaying into a pair of jets is reported using the dataset of proton-proton collisions recorded at s = 13 TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb−1. The distribution of the invariant mass of the two leading jets is examined for local excesses above a data-derived estimate of the Standard Model background. In addition to an inclusive dijet search, events with jets identified as containing b-hadrons are examined specifically. No significant excess of events above the smoothly falling background spectra is observed. The results are used to set cross-section upper limits at 95% confidence level on a range of new physics scenarios. Model-independent limits on Gaussian-shaped signals are also reported. The analysis looking at jets containing b-hadrons benefits from improvements in the jet flavour identification at high transverse momentum, which increases its sensitivity relative to the previous analysis beyond that expected from the higher integrated luminosity. [Figure not available: see fulltext.] © 2020, The Author(s).Indexación: Scopu
Measurement of isolated-photon plus two-jet production in pp collisions at p s = 13TeV with the ATLAS detector
The dynamics of isolated-photon plus two-jet production in "padding-size-4-x display--inline-block" style="background: var(--highlight-yellow); color: inherit;">pp collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset corresponding to an integrated luminosity of 36.1 fb−1. Cross sections are measured as functions of a variety of observables, including angular correlations and invariant masses of the objects in the final state, γ + jet + jet. Measurements are also performed in phase-space regions enriched in each of the two underlying physical mechanisms, namely direct and fragmentation processes. The measurements cover the range of photon (jet) transverse momenta from 150 GeV (100 GeV) to 2 TeV. The tree-level plus parton-shower predictions from Sherpa and Pythia as well as the next-to-leading-order QCD predictions from Sherpa are compared with the measurements. The next-to-leading-order QCD predictions describe the data adequately in shape and normalisation except for regions of phase space such as those with high values of the invariant mass or rapidity separation of the two jets, where the predictions overestimate the data. [Figure not available: see fulltext.] © 2020, The Author(s).Indexación: Scopu
Search for long-lived neutral particles produced in pp collisions at ffisffi p =13 TeV decaying into displaced hadronic jets in the ATLAS inner detector and muon spectrometer
A search is presented for pair production of long-lived neutral particles using 33 fb-1 of s=13 TeV proton-proton collision data, collected during 2016 by the ATLAS detector at the LHC. This search focuses on a topology in which one long-lived particle decays in the ATLAS inner detector and the other decays in the muon spectrometer. Special techniques are employed to reconstruct the displaced tracks and vertices in the inner detector and in the muon spectrometer. One event is observed that passes the full event selection, which is consistent with the estimated background. Limits are placed on scalar boson propagators with masses from 125 GeV to 1000 GeV decaying into pairs of long-lived hidden-sector scalars with masses from 8 GeV to 400 GeV. The limits placed on several low-mass scalars extend previous exclusion limits in the range of proper lifetimes cτ from 5 cm to 1 m. © 2020 CERN.Indexación: Scopu
Measurement of the Lund Jet Plane Using Charged Particles in 13 TeV Proton-Proton Collisions with the ATLAS Detector
The prevalence of hadronic jets at the LHC requires that a deep understanding of jet formation and structure is achieved in order to reach the highest levels of experimental and theoretical precision. There have been many measurements of jet substructure at the LHC and previous colliders, but the targeted observables mix physical effects from various origins. Based on a recent proposal to factorize physical effects, this Letter presents a double-differential cross-section measurement of the Lund jet plane using 139 fb-1 of s=13 TeV proton-proton collision data collected with the ATLAS detector using jets with transverse momentum above 675 GeV. The measurement uses charged particles to achieve a fine angular resolution and is corrected for acceptance and detector effects. Several parton shower Monte Carlo models are compared with the data. No single model is found to be in agreement with the measured data across the entire plane. © 2020 CERN.Indexacón:Scopu
Search for Higgs boson production in association with a high-energy photon via vector-boson fusion with decay into bottom quark pairs at √s = 13 TeV with the ATLAS detector
Indexación ScopusA search is presented for the production of the Standard Model Higgs boson in association with a high-energy photon. With a focus on the vector-boson fusion process and the dominant Higgs boson decay into b-quark pairs, the search benefits from a large reduction of multijet background compared to more inclusive searches. Results are reported from the analysis of 132 fb−1 of pp collision data at s = 13 TeV collected with the ATLAS detector at the LHC. The measured Higgs boson signal yield in this final-state signature is 1.3 ± 1.0 times the Standard Model prediction. The observed significance of the Higgs boson signal above the background is 1.3 standard deviations, compared to an expected significance of 1.0 standard deviations. [Figure not available: see fulltext.] © 2021, The Author(s).https://link-springer-com.recursosbiblioteca.unab.cl/article/10.1007%2FJHEP03%282021%2926
Search for resonances decaying into a weak vector boson and a Higgs boson in the fully hadronic final state produced in proton-proton collisions at s =13 TeV with the ATLAS detector
Indexación ScopusA search for heavy resonances decaying into a W or Z boson and a Higgs boson produced in proton-proton collisions at the Large Hadron Collider at s=13 TeV is presented. The analysis utilizes the dominant W→qq¯′ or Z→qq¯ and H→bb¯ decays with substructure techniques applied to large-radius jets. A sample corresponding to an integrated luminosity of 139 fb-1 collected with the ATLAS detector is analyzed and no significant excess of data is observed over the background prediction. The results are interpreted in the context of the heavy vector triplet model with spin-1 W′ and Z′ bosons. Upper limits on the cross section are set for resonances with mass between 1.5 and 5.0 TeV, ranging from 6.8 to 0.53 fb for W′→WH and from 8.7 to 0.53 fb for Z′→ZH at the 95% confidence level. © 2020 CERN.https://journals-aps-org.recursosbiblioteca.unab.cl/prd/abstract/10.1103/PhysRevD.102.11200
Measurement of the tt¯ production cross-section using eμ events with b-tagged jets in pp collisions at √s=13TeV with the ATLAS detector
This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2fb−1 of proton–proton collisions at a centre-of-mass energy of s=13TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be:σtt¯=818±8(stat)±27(syst)±19(lumi)±12(beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented
Search for Lepton-Flavor Violation in Z-Boson Decays with tau Leptons with the ATLAS Detector
Published 28 December 2021A search for lepton-flavor-violating Z → eτ and Z → μτ decays with pp collision data recorded by the ATLAS detector at the LHC is presented. This analysis uses 139 fb−1 of Run 2 pp collisions at ffiffiffi s p ¼ 13 TeV and is combined with the results of a similar ATLAS search in the final state in which the τ lepton decays hadronically, using the same data set as well as Run 1 data. The addition of leptonically decaying τ leptons significantly improves the sensitivity reach for Z → lτ decays. The Z → lτ branching fractions are constrained in this analysis to BðZ → eτÞ < 7.0 × 10−6 and BðZ → μτÞ < 7.2 × 10−6 at 95% confidence level. The combination with the previously published analyses sets the strongest constraints to date: BðZ → eτÞ < 5.0 × 10−6 and BðZ → μτÞ < 6.5 × 10−6 at 95% confidence level.G. Aad ... D. Duvnjak ... P. Jackson ... A. X. Y. Kong ... J. L. Oliver ... H. Potti ... T. A. Ruggeri ... K. Sato ... A. S. Sharma ... M. J. White ... et al. (ATLAS Collaboration
- …