28 research outputs found

    Error sources and data limitations for the prediction ofsurface gravity: a case study using benchmarks

    Get PDF
    Gravity-based heights require gravity values at levelled benchmarks (BMs), whichsometimes have to be predicted from surrounding observations. We use EGM2008 andthe Australian National Gravity Database (ANGD) as examples of model and terrestrialobserved data respectively to predict gravity at Australian national levelling network(ANLN) BMs. The aim is to quantify errors that may propagate into the predicted BMgravity values and then into gravimetric height corrections (HCs). Our results indicatethat an approximate ±1 arc-minute horizontal position error of the BMs causesmaximum errors in EGM2008 BM gravity of ~ 22 mGal (~55 mm in the HC at ~2200 melevation) and ~18 mGal for ANGD BM gravity because the values are not computed atthe true location of the BM. We use RTM (residual terrain modelling) techniques toshow that ~50% of EGM2008 BM gravity error in a moderately mountainous regioncan be accounted for by signal omission. Non-representative sampling of ANGDgravity in this region may cause errors of up to 50 mGals (~120 mm for the Helmertorthometric correction at ~2200 m elevation). For modelled gravity at BMs to beviable, levelling networks need horizontal BM positions accurate to a few metres, whileRTM techniques can be used to reduce signal omission error. Unrepresentative gravitysampling in mountains can be remedied by denser and more representative re-surveys,and/or gravity can be forward modelled into regions of sparser gravity

    Zerebelläre Erkrankungen

    No full text

    Rediscovery of B0J/ψKL0B^0 \rightarrow J/\psi K^0_L at Belle II

    No full text
    We present preliminary results on the reconstruction of the B0J/ψKL0B^0\to J\mskip 1mu / \psi\mskip 2mu K^0_{\scriptscriptstyle L} decay, where J/ψμ+μJ\mskip 1mu / \psi\mskip 2mu\to\mu^+\mu^- or e+ee^+e^-. Using a dataset corresponding to a luminosity of 62.8\pm0.6\mbox{fb}^{-1} collected by the Belle II experiment at the SuperKEKB asymmetric energy e+ee^+e^- collider, we measure a total of 267±21267\pm21 candidates with J/ψμ+μJ\mskip 1mu / \psi\mskip 2mu\to\mu^+\mu^- and 226±20226\pm20 with with J/ψe+eJ\mskip 1mu / \psi\mskip 2mu\to e^+e^-. The quoted errors are statistical only

    Measurement of the BB^{-} \rightarrow DD0^{0}\ell^{-}νˉ\bar{\nu}_{\ell} Branching Fraction in 62.8 fb1^{-1} of Belle II data

    No full text
    We report a measurement of the branching fraction of the semileptonic decay BB^{-} \rightarrow DD0^{0}\ell^{-}νˉ\bar{\nu}_{\ell} (and its charge conjugate) using 62.8 fb1^{-1} of Υ\Upsilon(4SS) \rightarrow BBBˉ\bar{B} data recorded by the Belle II experiment at the SuperKEKB asymmetric-energy ee+^{+} ee^{-} collider. The neutral charm meson is searched for in the decay mode DD0^{0} \rightarrow KK^{-} π\pi+^{+} and combined with a properly charged identified lepton (electron or muon) to reconstruct this decay. No reconstruction of the second BB meson in the Υ\Upsilon(4SS) event is performed. We obtain BB(DD0^{0}\ell^{-}νˉ\bar{\nu}_{\ell}) = (2.29 ±\pm 0.05 stat_{stat} ±\pm 0.08syst_{syst}, in agreement with the world average of this decay. We also determine the ratio of the electron to muon branching fractions to be RR(ee/μ\mu) = 1.04 ±\pm 0.05stat_{stat} ±\pm 0.03syst_{syst} and observe no deviation from lepton universality

    Measurements of branching fractions and direct CP-violating asymmetries in B+K+π0B^+ \to K^+ \pi^0 and π+π0\pi^+ \pi^0 decays using 2019 and 2020 Belle II data

    No full text
    We report measurements of branching fractions (B\mathcal B) and direct CP{\it CP}-violating asymmetries (ACP\mathcal A_{\it CP}) for the decays B+K+π0B^+\to K^+\pi^0 and B+π+π0B^+ \to \pi^+\pi^0 reconstructed with the Belle II detector in a sample of asymmetric-energy electron-positron collisions at the Υ(4S)\Upsilon(4S) resonance corresponding to 62.8 fb1\text{fb}^{-1} of integrated luminosity. The results are B(B+K+π0)=[11.91.0+1.1(stat)±1.6(syst)]×106\mathcal{B}(B^+ \to K^+\pi^0) = [11.9 ^{+1.1}_{-1.0} (\rm stat)\pm 1.6(\rm syst)]\times 10^{-6}, B(B+π+π0)=[5.50.9+1.0(stat)±0.7(syst)]×106\mathcal{B}(B^+ \to \pi^+\pi^0) = [5.5 ^{+1.0}_{-0.9} (\rm stat)\pm 0.7(\rm syst)]\times 10^{-6}, ACP(B+K+π0)=0.09±0.09(stat)±0.03(syst)\mathcal A_{\it CP}(B^+ \to K^+\pi^0) = -0.09 \pm 0.09 (\rm stat)\pm 0.03(\rm syst), and ACP(B+π+π0)=0.04±0.17(stat)±0.06(syst)\mathcal A_{\it CP}(B^+ \to \pi^+\pi^0) = -0.04 \pm 0.17 (\rm stat)\pm 0.06(\rm syst). The results are consistent with previous measurements and show a detector performance comparable with early Belle performance

    Measurements of branching fractions and CP-violating charge asymmetries in multibody charmless BB decays reconstructed in 2019-2020 Belle II data

    No full text
    We report on measurements of branching fractions (B\mathcal{B}) and CP-violating charge asymmetries (ACP\mathcal{A}_{\rm CP}) of multibody charmless BB decays reconstructed by the Belle II experiment at the SuperKEKB electron-positron collider. We use a sample of collisions collected in 2019 and 2020 at the Υ(4S)\Upsilon(4S) resonance and corresponding to 62.862.8 fb1^{-1} of integrated luminosity. We use simulation to determine optimized event selections. The ΔE\Delta E and MbcM_{\rm bc} distributions of the resulting samples are fit to determine signal yields of approximately 690, 840, and 380 decays for the channels B+K+KK+B^+ \to K^+K^-K^+, B+K+ππ+B^+ \to K^+\pi^-\pi^+, and B0K+ππ0B^0 \to K^+\pi^-\pi^0, respectively. These yields are corrected for efficiencies determined from simulation and control data samples to obtain B(B+K+KK+)=[35.8±1.6(stat)±1.4(syst)]×106\mathcal{B}(B^+ \to K^+K^-K^+) = [35.8 \pm 1.6(\rm stat) \pm 1.4 (\rm syst)]\times 10^{-6}, B(B+K+ππ+)=[67.0±3.3(stat)±2.3(syst)]×106\mathcal{B}(B^+ \to K^+\pi^-\pi^+) = [67.0 \pm 3.3 (\rm stat)\pm 2.3 (\rm syst)]\times 10^{-6}, B(B0K+ππ0)=[38.1±3.5(stat)±3.9(syst)]×106\mathcal{B}(B^0 \to K^+\pi^-\pi^0) = [38.1 \pm 3.5 (\rm stat)\pm 3.9 (\rm syst)]\times 10^{-6}, ACP(B+K+KK+)=0.103±0.042(stat)±0.020(syst)\mathcal{A}_{\rm CP}(B^+ \to K^+K^-K^+) = -0.103 \pm 0.042(\rm stat) \pm 0.020 (\rm syst), ACP(B+K+ππ+)=0.010±0.050(stat)±0.021(syst)\mathcal{A}_{\rm CP}(B^+ \to K^+\pi^-\pi^+) = -0.010 \pm 0.050 (\rm stat)\pm 0.021(\rm syst), and ACP(B0K+ππ0)=0.207±0.088(stat)±0.011(syst)\mathcal{A}_{\rm CP}(B^0 \to K^+\pi^-\pi^0) = 0.207 \pm 0.088 (\rm stat)\pm 0.011(\rm syst). Results are consistent with previous measurements and demonstrate detector performance comparable with the best Belle results
    corecore