28 research outputs found

    The effect of deuteration on organic magnetoresistance

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Synthetic Metals. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in SYNTHETIC METALS, 161, 7-8, (2011) DOI 10.1016/j.synthmet.2010.11.04

    The association between adherence to the Mediterranean diet and hepatic steatosis: cross-sectional analysis of two independent studies, the UK Fenland Study and the Swiss CoLaus Study.

    Get PDF
    The risk of hepatic steatosis may be reduced through changes to dietary intakes, but evidence is sparse, especially for dietary patterns including the Mediterranean diet. We investigated the association between adherence to the Mediterranean diet and prevalence of hepatic steatosis. Cross-sectional analysis of data from two population-based adult cohorts: the Fenland Study (England, n = 9645, 2005-2015) and CoLaus Study (Switzerland, n = 3957, 2009-2013). Habitual diet was assessed using cohort-specific food frequency questionnaires. Mediterranean diet scores (MDSs) were calculated in three ways based on adherence to the Mediterranean dietary pyramid, dietary cut-points derived from a published review, and cohort-specific tertiles of dietary consumption. Hepatic steatosis was assessed by abdominal ultrasound and fatty liver index (FLI) in Fenland and by FLI and non-alcoholic fatty liver disease (NAFLD) score in CoLaus. FLI includes body mass index (BMI), waist circumference, gamma-glutamyl transferase, and triglyceride; NAFLD includes diabetes, fasting insulin level, fasting aspartate-aminotransferase (AST), and AST/alanine transaminase ratio. Associations were assessed using Poisson regression. In Fenland, the prevalence of hepatic steatosis was 23.9% and 27.1% based on ultrasound and FLI, respectively, and in CoLaus, 25.3% and 25.7% based on FLI and NAFLD score, respectively. In Fenland, higher adherence to pyramid-based MDS was associated with lower prevalence of hepatic steatosis assessed by ultrasound (prevalence ratio (95% confidence interval), 0.86 (0.81, 0.90) per one standard deviation of MDS). This association was attenuated [0.95 (0.90, 1.00)] after adjustment for body mass index (BMI). Associations of similar magnitude were found for hepatic steatosis assessed by FLI in Fenland [0.82 (0.78, 0.86)] and in CoLaus [0.85 (0.80, 0.91)], and these were also attenuated after adjustment for BMI. Findings were similar when the other two MDS definitions were used. Greater adherence to the Mediterranean diet was associated with lower prevalence of hepatic steatosis, largely explained by adiposity. These findings suggest that an intervention promoting a Mediterranean diet may reduce the risk of hepatic steatosis

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66–2•79) in 2000 to 2•31 (2•17–2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5–137•8) in 2000 to a peak of 139•6 million (133•0–146•9) in 2016. Global livebirths then declined to 135•3 million (127•2–144•1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2•1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27•1% (95% UI 26•4–27•8) of global livebirths. Global life expectancy at birth increased from 67•2 years (95% UI 66•8–67•6) in 2000 to 73•5 years (72•8–74•3) in 2019. The total number of deaths increased from 50•7 million (49•5–51•9) in 2000 to 56•5 million (53•7–59•2) in 2019. Under-5 deaths declined from 9•6 million (9•1–10•3) in 2000 to 5•0 million (4•3–6•0) in 2019. Global population increased by 25•7%, from 6•2 billion (6•0–6•3) in 2000 to 7•7 billion (7•5–8•0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58•6 years (56•1–60•8) in 2000 to 63•5 years (60•8–66•1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global burden of 87 risk factors in 204 countries and territories, 1990�2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. Methods: GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk�outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk�outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk�outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95 uncertainty interval UI 9·51�12·1) deaths (19·2% 16·9�21·3 of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12�9·31) deaths (15·4% 14·6�16·2 of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253�350) DALYs (11·6% 10·3�13·1 of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0�9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10�24 years, alcohol use for those aged 25�49 years, and high systolic blood pressure for those aged 50�74 years and 75 years and older. Interpretation: Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Liver fat accumulation is associated with reduced hepatic insulin extraction with beta cell dysfunction in healthy older individuals

    Get PDF
    BackgroundThere is a well-established association between type 2 diabetes and non-alcoholic fatty liver disease (NAFLD) secondary to excess accumulation of intrahepatic lipid (IHL), but the mechanistic basis for this association is unclear. Emerging evidence suggests that in addition to being associated with insulin resistance, NAFLD may be associated with relative beta-cell dysfunction. We sought to determine the influence of liver fat on hepatic insulin extraction and indices of beta-cell function in a cohort of apparently healthy older white adults.MethodsWe performed a cross-sectional analysis of 70 healthy participants in the Hertfordshire Physical Activity Trial (39 males, age 71.3?±?2.4 years) who underwent oral glucose tolerance testing with glucose, insulin and C-Peptide levels measured every 30 minutes over two hours. The areas under the concentration curve for glucose, insulin and C-Peptide were used to quantify hepatic insulin extraction (HIE), the insulinogenic index (IGI), the C-Peptide increment (CGI), the Disposition Index (DI) and Adaptation Index (AI). Visceral fat was quantified with magnetic resonance (MR) imaging and IHL with MR spectroscopy. Insulin sensitivity was measured with the Oral Glucose Insulin Sensitivity (OGIS) model.Results29 of 70 participants (41%) exceeded our arbitrary threshold for NAFLD, i.e. IHL >5.5%. Compared to those with normal IHL, those with NAFLD had higher weight, BMI, waist and MR visceral fat, with lower insulin sensitivity and hepatic insulin extraction. Alcohol consumption, age, HbA1c and alanine aminotransferase (ALT) levels were similar in both groups. Insulin and C-Peptide excursions after oral glucose loading were higher in the NAFLD group, but the CGI and AI were significantly lower, indicating a relative defect in beta-cell function that is only apparent when C-Peptide is measured and when dynamic changes in glucose levels and also insulin sensitivity are taken into account. There was no difference in IGI or DI between the groups.ConclusionsAlthough increased IHL was associated with greater insulin secretion, modelled parameters suggested relative beta-cell dysfunction with NAFLD in apparently healthy older adults, which may be obscured by reduced hepatic insulin extraction. Further studies quantifying pancreatic fat content directly and its influence on beta cell function are warranted.Trial registrationISRCTN6098657

    Integration of the calcium carbonate looping process into an existing pulverized coal-fired power plant for CO2 capture: Techno-economic and environmental evaluation

    No full text
    This work focuses on the techno-economic and environmental evaluation for an existing pulverised coal-fired power plant retrofitted with the calcium carbonate looping (CCL) process. The CCL process is an attractive technology due to relatively low efficiency penalties. To better understand the performance characteristics and benefits of systems integration, the steady-state model for the CCL process, developed in ECLIPSE, was used to perform a techno-economic analysis. The simulation results showed that the net efficiency for the selected 600 MW PC power plant equipped with the CCL process was 33.8% (lower heating value) at 94% CO2 capture ratio. With respect to the reference plant without CO2 capture, this resulted in a lower efficiency penalty (7.4% points). The capital cost and maintenance and operating costs were estimated according to a bottom-up approach using the information gained through the mass and energy balance. Specific investment was found to be €1778/kWe, which is approximately 21% higher than for the reference plant. The levelized cost of electricity would be €77.3/MWh with CCL CO2 capture. The CO2 capture cost and CO2 avoidance cost relative to the corresponding reference plant were €16.3/tCO2 captured and €22.3/tCO2 avoided, respectively. The SimaPro software was used to perform a life cycle analysis of the capture technology to determine its environmental impact. The results illustrated that the overall climate change impact had been reduced by 75%, while the fossil depletion impact was increased by 22%

    Techno-economic and Environmental Analysis of Calcium Carbonate Looping for CO2 Capture from a Pulverised Coal-Fired Power Plant

    No full text
    Pulverised coal-fired (PC) power plants are among the major technologies used to generate electricity for power generation around the world. Coal-fired systems are generally considered to have high greenhouse gas emission intensities, apart from power plants that employ CO2 capture and storage (CCS) technology. As a technology option, calcium carbonate looping can be employed to remove carbon dioxide from the PC flue gas streams. Calcium carbonate looping is an attractive technology due to relatively low efficiency penalties. To better understand the performance characteristics and benefits of such a system integration, the ECLIPSE modelling software is used to perform a techno-economic analysis of the calcium carbonate looping system integrated in to an existing hard coal power plant. The overall system efficiency and the CO2 capture rate is evaluated based on a mass and energy balance calculation as part of the modelling. The capital costs, and maintenance and operating costs are estimated according to a bottom-up approach using the information gained through a mass and energy balance. The SimaPro software is used to perform a life cycle analysis of the capture technology to determine its environmental impact. The calcium carbonate looping system is also compared to other CCS solutions

    Association between birth weight and visceral fat in adults

    No full text
    BACKGROUND: Several studies reported inverse associations between birth weight and central adiposity in adults. However, few studied investigated the contributions of different abdominal fat compartments. OBJECTIVE: We examined associations between birth weight and adult visceral and subcutaneous abdominal fat in the population-based Fenland study. DESIGN: A total of 1092 adults (437 men and 655 women) aged 30-55 y had available data on reported birth weight, standard anthropometric measures, and visceral and subcutaneous abdominal fat estimated by ultrasound. In a subgroup (n = 766), dual-energy X-ray absorptiometry (DXA) assessment of total abdominal fat was performed. Linear regression models were used to analyze relations between birth weight and the various fat variables adjusted for sex, age, education, smoking, and body mass index (BMI). RESULTS: After adjustment for adult BMI, there was an inverse association between birth weight and total abdominal fat [B (partial regression coefficient expressed as SD/1-kg change in birth weight) = -0.09, P = 0.002] and visceral fat (B = -0.07, P = 0.01) but not between birth weight and subcutaneous abdominal fat (B = -0.01, P = 0.3). Tests for interaction showed that adult BMI modified the association between birth weight and visceral fat (P for interaction = 0.01). In stratified analysis, the association between birth weight and visceral fat was apparent only in individuals with the highest BMI tertile (B = -0.08, P = 0.04). CONCLUSIONS: The inverse association between birth weight and adult abdominal fat appeared to be specific to visceral fat. However, associations with birth weight were apparent only after adjustment for adult BMI. Therefore, we suggest that rapid postnatal weight gain, rather than birth weight alone, leads to increased visceral fat
    corecore