28 research outputs found

    Iron and Nickel spectral opacity calculations in conditions relevant for pulsating stellar envelopes and experiments

    Full text link
    Seismology of stars is strongly developing. To address this question we have formed an international collaboration OPAC to perform specific experimental measurements, compare opacity calculations and improve the opacity calculations in the stellar codes [1]. We consider the following opacity codes: SCO, CASSANDRA, STA, OPAS, LEDCOP, OP, SCO-RCG. Their comparison has shown large differences for Fe and Ni in equivalent conditions of envelopes of type II supernova precursors, temperatures between 15 and 40 eV and densities of a few mg/cm3 [2, 3, 4]. LEDCOP, OPAS, SCO-RCG structure codes and STA give similar results and differ from OP ones for the lower temperatures and for spectral interval values [3]. In this work we discuss the role of Configuration Interaction (CI) and the influence of the number of used configurations. We present and include in the opacity code comparisons new HULLAC-v9 calculations [5, 6] that include full CI. To illustrate the importance of this effect we compare different CI approximations (modes) available in HULLAC-v9 [7]. These results are compared to previous predictions and to experimental data. Differences with OP results are discussed.Comment: 4 pages, 3 figures, conference Inertial Fusion Sciences and Applications, Bordeaux, 12th to 16th September 2011; EPJ web of Conferences 201

    Radiative properties of stellar plasmas and open challenges

    Full text link
    The lifetime of solar-like stars, the envelope structure of more massive stars, and stellar acoustic frequencies largely depend on the radiative properties of the stellar plasma. Up to now, these complex quantities have been estimated only theoretically. The development of the powerful tools of helio- and astero- seismology has made it possible to gain insights on the interiors of stars. Consequently, increased emphasis is now placed on knowledge of the monochromatic opacity coefficients. Here we review how these radiative properties play a role, and where they are most important. We then concentrate specifically on the envelopes of β\beta Cephei variable stars. We discuss the dispersion of eight different theoretical estimates of the monochromatic opacity spectrum and the challenges we need to face to check these calculations experimentally.Comment: 6 pages, 5 figures, in press (conference HEDLA 2010

    Interaction of configuration in spectral opacity calculations for stellar physics

    No full text
    We discuss the role of Configuration Interaction (CI) and the influence of the number of configurations taken into account in the calculations of nickel and iron spectral opacities provided by the OPAC international collaboration, including statistical approaches (SCO, CASSANDRA, STA), detailed accounting (OPAS, LEDCOP, OP, HULLAC-v9) or hybrid method (SCO-RCG). Opacity calculations are presented for a temperature T of 27.3 eV and a density of 3.4 mg/cm3, conditions relevant for pulsating stellar envelopes

    Radiative properties of stellar envelopes: Comparison of asteroseismic results to opacity calculations and measurements for iron and nickel

    No full text
    International audienceThe international OPAC consortium consists of astrophysicists, plasma physicists and experimentalists who examine opacity calculations used in stellar physics that appear questionable and perform new calculations and laser experiments to understand the differences and improve the calculations. We report on iron and nickel opacities for envelopes of stars from 2 to and deliver our first conclusions concerning the reliability of the used calculations by illustrating the importance of the configuration interaction and of the completeness of the calculations for temperatures around 15–27 eV
    corecore