27 research outputs found

    Passive Q-switching and mode-locking for the generation of nanosecond to femtosecond pulses

    Full text link

    Photoinduced formation of thiols in human hair

    No full text
    Raman, scanning electron, and optical microscopy of hair and spectrophotometry of soluble hair proteins are used to study the effect of UV-vis radiation on white hair. The samples of a healthy subject are irradiated using a mercury lamp and compared with non-irradiated (control) hair. The cuticle damage with partial exfoliation is revealed with the aid of SEM and optical microscopy of semifine sections. Gel filtration chromatography shows that the molecular weight of soluble proteins ranges from 5 to 7 kDa. Absorption spectroscopy proves an increase in amount of thiols in a heavier fraction of the soluble proteins of irradiated samples under study. Raman data indicate a decrease in the amount of S[sbnd]S and C[sbnd]S bonds in cystines and an increase in the amount of S[sbnd]H bonds due to irradiation. Such changes are more pronounced in peripheral regions of hair. Conformational changes of hair keratins presumably related to the cleavage of disulfide bonds, follow from variations in amide I and low-frequency Raman bands. An increase in the content of thiols in proteins revealed by both photometric data on soluble proteins and Raman microspectroscopy of hair cuts can be used to develop a protocol of the analysis of photoinduced hair modification. © 2016 Elsevier B.V

    Photoinduced formation of thiols in human hair

    No full text
    Raman, scanning electron, and optical microscopy of hair and spectrophotometry of soluble hair proteins are used to study the effect of UV-vis radiation on white hair. The samples of a healthy subject are irradiated using a mercury lamp and compared with non-irradiated (control) hair. The cuticle damage with partial exfoliation is revealed with the aid of SEM and optical microscopy of semifine sections. Gel filtration chromatography shows that the molecular weight of soluble proteins ranges from 5 to 7 kDa. Absorption spectroscopy proves an increase in amount of thiols in a heavier fraction of the soluble proteins of irradiated samples under study. Raman data indicate a decrease in the amount of S[sbnd]S and C[sbnd]S bonds in cystines and an increase in the amount of S[sbnd]H bonds due to irradiation. Such changes are more pronounced in peripheral regions of hair. Conformational changes of hair keratins presumably related to the cleavage of disulfide bonds, follow from variations in amide I and low-frequency Raman bands. An increase in the content of thiols in proteins revealed by both photometric data on soluble proteins and Raman microspectroscopy of hair cuts can be used to develop a protocol of the analysis of photoinduced hair modification. © 2016 Elsevier B.V

    Iron metabolic pathways in the processes of sponge plasticity

    No full text
    © 2020 Finoshin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The ability to regulate oxygen consumption evolved in ancestral animals and is intrinsically linked to iron metabolism. The iron pathways have been intensively studied in mammals, whereas data on distant invertebrates are limited. Sea sponges represent the oldest animal phylum and have unique structural plasticity and capacity to reaggregate after complete dissociation. We studied iron metabolic factors and their expression during reaggregation in the White Sea cold-water sponges Halichondria panicea and Halisarca dujardini. De novo transcriptomes were assembled using RNA-Seq data, and evolutionary trends were analyzed with bioinformatic tools. Differential expression during reaggregation was studied for H. dujardini. Enzymes of the heme biosynthesis pathway and transport globins, neuroglobin (NGB) and androglobin (ADGB), were identified in sponges. The globins mutate at higher evolutionary rates than the heme synthesis enzymes. Highly conserved iron-regulatory protein 1 (IRP1) presumably interacts with the iron-responsive elements (IREs) found in mRNAs of ferritin (FTH1) and a putative transferrin receptor NAALAD2. The reaggregation process is accompanied by increased expression of IRP1, the antiapoptotic factor BCL2, the inflammation factor NFκB (p65), FTH1 and NGB, as well as by an increase in mitochondrial density. Our data indicate a complex mechanism of iron regulation in sponge structural plasticity and help to better understand general mechanisms of morphogenetic processes in multicellular species

    Structure of Neuroglobin from Cold-Water Sponge Halisarca dujardinii

    No full text
    © 2020, Pleiades Publishing, Inc. Abstract: The iron-containing protein neuroglobin (Ngb) involved in the transport of oxygen is generally considered the precursor of all animal globins. In this report, we studied the structure of Ngb of the cold-water sponge Halisarca dujardinii. In sponges, the oldest multicellular organisms, the Ngb gene contains three introns. In contrast to human Ngb, its promoter contains a TATA-box, rather than CG-rich motifs. In sponges, Ngb consists of 169 amino acids showing rather low similarity with its mammalian orthologues. It lacks Glu and Arg residues in positions required for prevention of hypoxia-related apoptosis. Nevertheless, Ngb contains both proximal and distal conserved heme-biding histidines. The primary structure of H. dujardinii neuroglobin predicted by sequencing was confirmed by mass-spectrometry analysis of recombinant Ngb expressed in E. coli. The high level of Ngb expression in sponge tissues suggests its possible involvement in the gas metabolism and presumably in other key metabolic processes in H. dujardinii

    Structure of Neuroglobin from Cold-Water Sponge Halisarca dujardinii

    No full text
    The iron-containing protein neuroglobin (Ngb) involved in the transport of oxygen is generally considered the precursor of all animal globins. In this report, we studied the structure of Ngb of the cold-water sponge Halisarca dujardinii. In sponges, the oldest multicellular organisms, the Ngb gene contains three introns. In contrast to human Ngb, its promoter contains a TATA-box, rather than CG-rich motifs. In sponges, Ngb consists of 169 amino acids showing rather low similarity with its mammalian orthologues. It lacks Glu and Arg residues in positions required for prevention of hypoxia-related apoptosis. Nevertheless, Ngb contains both proximal and distal conserved heme-biding histidines. The primary structure of H. dujardinii neuroglobin predicted by sequencing was confirmed by mass-spectrometry analysis of recombinant Ngb expressed in E. coli. The high level of Ngb expression in sponge tissues suggests its possible involvement in the gas metabolism and presumably in other key metabolic processes in H. dujardinii
    corecore