9 research outputs found

    Low-frequency excitations in glassy selenium: A comparison of neutron-scattering and molecular-dynamics results

    Get PDF
    The microscopic low-frequency dynamics of glassy selenium is investigated by means of the concurrent use of neutron inelastic scattering and computer simulations. A separation of the dynamic response in terms of intra- and interchain processes is achieved from the analysis of the simulation results. The S(Q,E) dynamic structure factors are analyzed in terms of the frequency moments or from a model scattering law, and the wave-vector dependence of the relevant quantities is established. Finally, the anomalous behavior of the heat capacity at moderately low temperatures is shown to be originated by mostly interchain interactions.Dirección General de Investigación Científica y Técnica PB89-0037-C

    Structure and relaxations in liquid and amorphous Selenium

    Get PDF
    We report a molecular dynamics simulation of selenium, described by a three-body interaction. The temperatures T_g and T_c and the structural properties are in agreement with experiment. The mean nearest neighbor coordination number is 2.1. A small pre-peak at about 1 AA^-1 can be explained in terms of void correlations. In the intermediate self-scattering function, i.e. the density fluctuation correlation, classical behavior, alpha- and beta-regimes, is found. We also observe the plateau in the beta-regime below T_g. In a second step, we investigated the heterogeneous and/or homogeneous behavior of the relaxations. At both short and long times the relaxations are homogeneous (or weakly heterogeneous). In the intermediate time scale, lowering the temperature increases the heterogeneity. We connect these different domains to the vibrational (ballistic), beta- and alpha-regimes. We have also shown that the increase in heterogeneity can be understood in terms of relaxations

    Vapour-liquid coexistence in many-body dissipative particle dynamics

    Full text link
    Many-body dissipative particle dynamics is constructed to exhibit vapour-liquid coexistence, with a sharp interface, and a vapour phase of vanishingly small density. In this form, the model is an unusual example of a soft-sphere liquid with a potential energy built out of local-density dependent one-particle self energies. The application to fluid mechanics problems involving free surfaces is illustrated by simulation of a pendant drop.Comment: 8 pages, 6 figures, revtex

    New techniques for simulating crystals

    No full text
    Methods for simulating solid crystalline phases are generally not as straightforward as those for fluids. This work discusses the reason for this and reviews some recently developed Monte-Carlo techniques for simulating crystalline phases. The self-referential (SR) method for calculating crystal free energies is described first. This technique is particularly straightforward and it is expected to be very versatile. Next, a novel kind of Gibbs ensemble method adapted to treat crystalline solid-fluid coexistence is described. This technique requires free energy calculations of the crystalline phase as input, and of course, these can be provided by the SR method

    Correlated atomic motions in glassy selenium

    Get PDF
    11 págs.; 6 figs.The elastic and total (energy-integrated) structure factors for glassy selenium have been measured by means of neutron spectroscopy within the temperature range 15 KT310 K. The correlated nature of the atomic vibrations gives rise to marked features in the total (energy-integrated) inelastic structure factors defined as the difference between the total and elastic intensities. Also, both structure factors show rather distinct dependences with temperature, which are discussed in some detail. © 1994 The American Physical Society.Work supported in part by Grant No. PB92-0114-C03 (DGICYT, Spain).Peer Reviewe

    Density Functional Theories of Hard Particle Systems

    No full text

    Bridging the Gap Between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives

    No full text
    corecore