11 research outputs found

    Solar magnetoconvection

    Get PDF
    In recent years the study of how magnetic fields interact with thermal convection in the Sun has made significant advances. These are largely due to the rapidly increasing computer power and its application to more physically relevant parameters regimes and to more realistic physics and geometry in numerical models. Here we present a survey of recent results following one line of investigations and discuss and compare the results of these with observed phenomena

    Development of structure in pores and sunspots: flows around axisymmetric magnetic flux tubes

    Get PDF
    Flux elements, pores and sunspots form a family of magnetic features observed at the solar surface. As a first step towards developing a fully nonlinear model of the structure of these features and of the dynamics of their interaction with solar convection, we conduct numerical experiments on idealised axisymmetric flux tubes in a compressible convecting atmosphere in cylindrical boxes of radius up to eight times their depth. We find that the magnetic field strength of the flux tubes is roughly independent of both distance from the centre and the total flux content of the flux tube, but that the angle of inclination from the vertical of the field at the edge of the tube increases with flux content. In all our calculations, fluid motion converges on the flux tube at the surface. The results compare favourably with observations of pores; in contrast, large sunspots lie at the centre of an out-flowing moat cell. We conjecture that there is an inflow hidden beneath the penumbrae of large spots, and that this inflow is responsible for the remarkable longevity of such features

    Complete Models of Axisymmetric Sunspots: Magnetoconvection with Coronal Heating

    Get PDF
    We present detailed results of numerical experiments into the nature of complete sunspots. The models remain highly idealized but include fully nonlinear compressible magnetoconvection in an axisymmetric layer that drives energy into an overlying, low-B plasma. We survey a range of parameters in which the resulting magnetoconvection displays the formation of pore- and sunspot-like behavior and assess the coronal signatures resulting from the energy generated by the magnetoconvection. The coronal heating is assumed to be a result of the dissipation by an unspecified means of a fraction of the Poynting flux entering the corona. The expected signatures in the EUV and soft X-ray bandpasses of the Transition Region and Coronal Explorer and Yohkoh/SXT, respectively, are examined. This ad hoc coupling of the corona to the subphotospheric region results in a dynamical behavior that is consistent with recent observational results. This agreement demonstrates that even simple coupled modeling can lead to diagnostics for investigations of both subphotospheric sunspot structures and coronal heating mechanisms

    Turbulent Compressible Convection with Rotation - Penetration above a Convection Zone

    Full text link
    We perform Large eddy simulations of turbulent compressible convection in stellar-type convection zones by solving the Navi\'{e}r-Stokes equations in three dimensions. We estimate the extent of penetration into the stable layer above a stellar-type convection zone by varying the rotation rate ({\boldmathΩ\rm\Omega}), the inclination of the rotation vector (θ\theta) and the relative stability (SS) of the upper stable layer. The computational domain is a rectangular box in an f-plane configuration and is divided into two regions of unstable and stable stratification with the stable layer placed above the convectively unstable layer. Several models have been computed and the penetration distance into the stable layer above the convection zone is estimated by determining the position where time averaged kinetic energy flux has the first zero in the upper stable layer. The vertical grid spacing in all the model is non-uniform, and is less in the upper region so that the flows are better resolved in the region of interest. We find that the penetration distance increases as the rotation rate increases for the case when the rotation vector is aligned with the vertical axis. However, with the increase in the stability of the upper stable layer, the upward penetration distance decreases. Since we are not able to afford computations with finer resolution for all the models, we compute a number of models to see the effect of increased resolution on the upward penetration. In addition, we estimate the upper limit on the upward convective penetration from stellar convective cores.Comment: Accepted for Publication in Asttrophysics & Space Scienc

    Can we Determine Electric Fields and Poynting Fluxes from Vector Magnetograms and Doppler Measurements?

    Full text link
    The availability of vector magnetogram sequences with sufficient accuracy and cadence to estimate the time derivative of the magnetic field allows us to use Faraday's law to find an approximate solution for the electric field in the photosphere, using a Poloidal-Toroidal Decomposition (PTD) of the magnetic field and its partial time derivative. Without additional information, however, the electric field found from this technique is under-determined -- Faraday's law provides no information about the electric field that can be derived the gradient of a scalar potential. Here, we show how additional information in the form of line-of-sight Doppler flow measurements, and motions transverse to the line-of-sight determined with ad-hoc methods such as local correlation tracking, can be combined with the PTD solutions to provide much more accurate solutions for the solar electric field, and therefore the Poynting flux of electromagnetic energy in the solar photosphere. Reliable, accurate maps of the Poynting flux are essential for quantitative studies of the buildup of magnetic energy before flares and coronal mass ejections.Comment: Solar Physics, in press. 14 pages, 3 figure

    Comparison of large-scale flows on the Sun measured by time-distance helioseismology and local correlation tracking technique

    Get PDF
    We present a direct comparison between two different techniques time-distance helioseismology and a local correlation tracking method for measuring mass flows in the solar photosphere and in a near-surface layer: We applied both methods to the same dataset (MDI high-cadence Dopplergrams covering almost the entire Carrington rotation 1974) and compared the results. We found that after necessary corrections, the vector flow fields obtained by these techniques are very similar. The median difference between directions of corresponding vectors is 24 degrees, and the correlation coefficients of the results for mean zonal and meridional flows are 0.98 and 0.88 respectively. The largest discrepancies are found in areas of small velocities where the inaccuracies of the computed vectors play a significant role. The good agreement of these two methods increases confidence in the reliability of large-scale synoptic maps obtained by them.Comment: 14 pages, 6 figures, just before acceptance in Solar Physic

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    Are Solar Active Regions with Major Flares More Fractal, Multifractal, or Turbulent than Others?

    Full text link
    Multiple recent investigations of solar magnetic field measurements have raised claims that the scale-free (fractal) or multiscale (multifractal) parameters inferred from the studied magnetograms may help assess the eruptive potential of solar active regions, or may even help predict major flaring activity stemming from these regions. We investigate these claims here, by testing three widely used scale-free and multiscale parameters, namely, the fractal dimension, the multifractal structure function and its inertial-range exponent, and the turbulent power spectrum and its power-law index, on a comprehensive data set of 370 timeseries of active-region magnetograms (17,733 magnetograms in total) observed by SOHO's Michelson Doppler Imager (MDI) over the entire Solar Cycle 23. We find that both flaring and non-flaring active regions exhibit significant fractality, multifractality, and non-Kolmogorov turbulence but none of the three tested parameters manages to distinguish active regions with major flares from flare-quiet ones. We also find that the multiscale parameters, but not the scale-free fractal dimension, depend sensitively on the spatial resolution and perhaps the observational characteristics of the studied magnetograms. Extending previous works, we attribute the flare-forecasting inability of fractal and multifractal parameters to i) a widespread multiscale complexity caused by a possible underlying self-organization in turbulent solar magnetic structures, flaring and non-flaring alike, and ii) a lack of correlation between the fractal properties of the photosphere and overlying layers, where solar eruptions occur. However useful for understanding solar magnetism, therefore, scale-free and multiscale measures may not be optimal tools for active-region characterization in terms of eruptive ability or, ultimately,for major solar-flare prediction.Comment: 25 pages, 7 figures, 2 tables, Solar Phys., in pres

    Local Helioseismology of Sunspots: Current Status and Perspectives (Invited Review)

    Full text link
    Mechanisms of the formation and stability of sunspots are among the longest-standing and intriguing puzzles of solar physics and astrophysics. Sunspots are controlled by subsurface dynamics hidden from direct observations. Recently, substantial progress in our understanding of the physics of the turbulent magnetized plasma in strong-field regions has been made by using numerical simulations and local helioseismology. Both the simulations and helioseismic measurements are extremely challenging, but it becomes clear that the key to understanding the enigma of sunspots is a synergy between models and observations. Recent observations and radiative MHD numerical models have provided a convincing explanation to the Evershed flows in sunspot penumbrae. Also, they lead to the understanding of sunspots as self-organized magnetic structures in the turbulent plasma of the upper convection zone, which are maintained by a large-scale dynamics. Local helioseismic diagnostics of sunspots still have many uncertainties, some of which are discussed in this review. However, there have been significant achievements in resolving these uncertainties, verifying the basic results by new high-resolution observations, testing the helioseismic techniques by numerical simulations, and comparing results obtained by different methods. For instance, a recent analysis of helioseismology data from the Hinode space mission has successfully resolved several uncertainties and concerns (such as the inclined-field and phase-speed filtering effects) that might affect the inferences of the subsurface wave-speed structure of sunspots and the flow pattern. It becomes clear that for the understanding of the phenomenon of sunspots it is important to further improve the helioseismology methods and investigate the whole life cycle of active regions, from magnetic-flux emergence to dissipation.Comment: 34 pages, 18 figures, submitted to Solar Physic

    Theoretical modeling for the stereo mission

    Full text link
    corecore