2 research outputs found

    On the center-vortex baryonic area law

    Full text link
    We correct an unfortunate error in an earlier work of the author, and show that in center-vortex QCD (gauge group SU(3)) the baryonic area law is the so-called YY law, described by a minimal area with three surfaces spanning the three quark world lines and meeting at a central Steiner line joining the two common meeting points of the world lines. (The earlier claim was that this area law was a so-called Δ\Delta law, involving three extremal areas spanning the three pairs of quark world lines.) We give a preliminary discussion of the extension of these results to SU(N),N>3SU(N), N>3. These results are based on the (correct) baryonic Stokes' theorem given in the earlier work claiming a Δ\Delta law. The YY-form area law for SU(3) is in agreement with the most recent lattice calculations.Comment: 5 pages, RevTeX4, 5 .eps figure

    Measuring geometric phases of scattering states in nanoscale electronic devices

    Get PDF
    We show how a new quantum property, a geometric phase, associated with scattering states can be exhibited in nanoscale electronic devices. We propose an experiment to use interference to directly measure the effect of the new geometric phase. The setup involves a double path interferometer, adapted from that used to measure the phase evolution of electrons as they traverse a quantum dot (QD). Gate voltages on the QD could be varied cyclically and adiabatically, in a manner similar to that used to observe quantum adiabatic charge pumping. The interference due to the geometric phase results in oscillations in the current collected in the drain when a small bias across the device is applied. We illustrate the effect with examples of geometric phases resulting from both Abelian and non-Abelian gauge potentials.Comment: Six pages two figure
    corecore