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Measuring geometric phases of scattering states in nanoscale electronic devices

Huan-Qiang Zhou,1,* Urban Lundin,2 Sam Young Cho,2 and Ross H. McKenzie2
1Centre for Mathematical Physics, University of Queensland, Brisbane Qld 4072, Australia

2Department of Physics, University of Queensland, Brisbane Qld 4072, Australia
~Received 2 December 2003; published 22 March 2004!

We show how a quantum property, a geometric phase, associated with scattering states can be exhibited in
nanoscale electronic devices. We propose an experiment to use interference to directly measure the effect of
this geometric phase. The setup involves a double-path interferometer, adapted from that used to measure the
phase evolution of electrons as they traverse a quantum dot~QD!. Gate voltages on the QD could be varied
cyclically and adiabatically, in a manner similar to that used to observe quantum adiabatic charge pumping.
The interference due to the geometric phase results in oscillations in the current collected in the drain when a
small bias across the device is applied. We illustrate the effect with examples of geometric phases resulting
from both Abelian and non-Abelian gauge potentials.
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Nanoscale electronic devices can exhibit distinct quan
features such as interference,1,2 entanglement,3 discrete
charge,4 the Aharonov-Bohm effect,5 and Berry’s phase.6 The
effect of Berry’s phases associated with both Abelian a
non-Abelian gauge potentials has found possible applicat
in quantum computation.7,8 In systems with discrete energ
levels, Berry’s phase makes use of the adiabatic theor9

and requires that the frequency of variation of parameter
much less than the energy-level spacing. Berry’s phase
been demonstrated in a variety of microscopic10 as well as
mesoscopic systems.11

A natural question arises as to whether or not there
geometric phase accompanying a scattering state in a c
and adiabatic variation of external parameters which cha
terize anopensystem with a continuous energy spectrum.
important example of such scattering states are those pre
in a nanoscale electronic device coupled to electrical lea
This question has been addressed recently in the conte
quantum adiabatic pumping of charge and spin in nanos
electronic devices.12 The latter is subject to intense study,13

motivated by the experimental realization reported in
works of Marcus and co-workers.14,15It was found that quan-
tum adiabatic scattering provides another setting in wh
both Abelian and non-Abelian gauge potentials arise na
rally. It was noticed that two gauge potentials may be defin
in terms of the row and column vectors of instantaneo
~frozen! scattering matrix, respectively. They are connec
with each other via a time-reversal operation. Indeed,
scattering states associated with Hamiltonian accumu
geometric phases defined by the row vectors whereas
scattering states associated with the time-reversed Ha
tonian accumulate geometric phases defined by the col
vectors. The connection between the geometric phases
the time-reversed scattering states and quantum adia
pumping was clarified in Ref. 12. In fact, the same no
Abelian gauge field as that found by Moodyet al.16 for a
diatomic molecule also appears in an open system descri
the tunneling from a scanning tunneling microscopic
through a single magnetic spin.12 However, it remains open
how to experimentally observe the geometric phase fo
scattering state itself.
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In this paper, we describe the general theory characte
ing geometric phases for scattering states associated w
Hamiltonian with a continuous energy spectrum. A possi
experimental setup utilizing nanoscale electronic device
proposed to directly measure the effect of the geome
phases in an interference experiment. The experimental s
is similar to that used to measure the phase evolution
electrons as they traverse a quantum dot~QD!, with some
adaptation to accommodate the adiabatic variation of ex
nal parameters, e.g., gate voltages. It turns out that the
metric phase manifests itself in oscillations in the curre
collected in the drain when a small bias across the devic
applied.

Consider an open quantum-mechanical system chara
ized by the HamiltonianH(t) with a continuous energy spec
trum, which undergoes an adiabatic evolution. By ‘‘ad
batic’’ we mean that the time particles ‘‘dwell’’ inside th
scattering region is much shorter than the adiabatic per
Then the system is well described by thefrozen in-
stantaneous scattering matrixS(t),17,18 which is a 2N32N
matrix, with N the number of channels~such as spin! for
the incoming and outgoing waves. Define vectorsna
5(Sa1 , . . . ,Sa,2N) (a51, . . . ,N) in terms of the rows of
the scattering matrix. These vectors are orthonormal and
constitute a smooth set of local bases. As the system un
goes an adiabatic and cyclic evolution and returns to
initial configuration, the interplay between the adiabatic~dy-
namic! evolution and the global geometric property impli
that the row vectorsna acquire a geometric phase,

U5P expS i R (
n

AndVnD , ~1!

where P denotes path ordering,Aabn5 inb* •]nna (]n

[]/]Vn) is the gauge potential, andVn are independen
slowly varying external parameters. Here we emphasize t
unlike Berry’s phases, the causality condition plays an ess
tial role, which states that scattered waves appearonly after
the incident wave hits the scatterer. Under the gauge tra
formation which mixes up scattering states from differe
channelsna85(bvabnb , the gauge potential defined byA
5(nAndVn transforms as
©2004 The American Physical Society08-1
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FIG. 1. ~Color online! ~a! Proposed electronic interferometer to directly measure the geometric phase. The cyclic and adiabatic v
of the gate voltagesV1 ,V2 , andV3 pairwise imposes a geometric phase in the QD arm. The inset shows the model one-dimensional p
inside the QD.~b! Geometric phaseg as a function ofDV1 , with DV250, andDV3 kept constant atV3

0/10. The inset shows the contour
for three different values ofDV1 , presented as colored dots on the curve. The black dot in the inset represents the initial state. Th
lines in the inset show the positions of transmission resonances through the QD in the parameter space for a selected incidenE
50.56V1

0, which is off resonance.~c! Geometric phaseg as a function ofDV2 , with DV1 kept constant atV1
0/10, andDV350. The inset

displays the same information as in~b!. The geometric phaseg shows a dip when the contour touches a new transmission resonance.
is a significant change ing whenDV2 varies.~d!. Same as~c! but for a different value of the incident energyE positioned at a resonance
Parameters~in units ofV1

0 ,\5me51): a540,b539,V2
0521.0,V3

021.2,d5p/2. ~If V1
0;60 mV above the Fermi level andm* 50.07me as

for GaAs, thena;410 nm, andb;400 nm.
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That is,A describesU(N) gauge potentials arising from th
superposition of different channel scattering states. As a
cial case, the Abelian gauge groupU(1) originates from the
fact that the absolute phase is not observable in quan
mechanics. The adiabatic variation of the scattering poten
V(x,t) induces a local gauge transformationn85exp(iw)n
due to the time dependence of the phasew in quantum me-
chanics.

Let us now turn to a specific proposal as to how to e
perimentally observe the effect of the geometric phase,
mesoscopic electronic device. We emphasize that the th
presented here is not restricted to mesoscopic physics, b
any system described by scattering states with continu
energy spectrum. We also emphasize that, although~for rea-
sons of concreteness! we consider a specific potential for
quantum dot, the general idea applies to scattering state
general. Consider a QD modeled by a potentialV(x) with x
denoting the coordinate@see Fig. 1~a!#. For reasons of sim-
plicity, we choose the potentialV(x) as 0 foruxu>a, V1 for
2a,x,2b, V2 for uxu<b, andV3 for b,x,a. For a QD
of size 800 nm@see Fig. 1~a!#, the energy-level spacing is o
the order of 4.5 meV. The Coulomb energy, assuming a
electric constant of 10, is of the order of 0.08 meV. Thus,
dimension of the QD is such that the Coulomb energy
much less than the separation between the resonances
11330
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can be ignored. Also the spin-dependent scattering inside
QD is ignored. Then the instantaneous 232 scattering ma-
trix S(t) for the QD is determined from the solution of th
Schrödinger equation@2(\2/2m)]2/]x21V(x)2E#c50.
Let r QD and tQD denote, respectively, the reflection an
transmission coefficients of the QD for the left incident ele
tron, andr QD8 andtQD8 denote, respectively, the reflection an
transmission coefficients of the QD for the right incide
electron, which are functions of the parameters of the QD
the potential is mirror symmetric, i.e.,V15V3 , then tQD

5tQD8 and r QD5r QD8 and the geometric phase is trivia
Therefore, to observe a nontrivial geometric phase it is n
essary to break the mirror symmetry of the potential. T
implies that we have to chooseV1ÞV3 .

Suppose we periodically and adiabatically vary indep
dent external parametersV1 , V2 , andV3 . For instance, we
can choose to adiabatically changeV1 andV2 with V3 kept
constant, i.e.,V15V1

01DV1sinVt, V25V2
01DV2@sin(d1Vt)

2sind#,V35V3
0 (DV1,2!V1,2

0 ), with V being the slow fre-
quency characterizing the adiabaticity andd the phase dif-
ference~the presence of an extra term2DV2sind is only to
ensure that the initial state is the same for all different c
tours!. In our case, this may be achieved by controlling t
gate voltages such that the dwell timetd during which elec-
trons scatter off the QD is much shorter than the periodT
52p/V during which the system completes the whole ad
8-2
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batic cyclic process. In such a limit, electrons well defined
the incident energyE are scattered at a well-defined timet as
measured at large time scale by the adiabatic cycle perioT,
consistent with the Heisenberg uncertainty principle. Tha
it makes sense to speak of the instantaneous scattering m
for electrons with a given incident energy. Then, in additi
to the dynamic phase, the scattered waves accumulate a
metric phase factoreig during one cycle withg given using
Eq. ~1! for the U(1) case. Nown denotes the row vector o
the scattering matrixS, i.e., n5(r QD ,tQD), so that

g5 R r QD* drQD1tQD* dtQD5 R A1dV11A2dV21A3dV3 ,

~3!

sincer QD and tQD depend on any variables which vary du
ing the cycle. Here we assume allV’s are changing with
time. However, if any of them is kept constant the cor
sponding term disappears. In this case, the gauge transfo
tion, Eq. ~2!, becomes

A85A2dw. ~4!

The curvature defined bydA is gauge invariant, which al
lows us to rewriteg in the form g5**dA using Stokes’
theorem, where the integral is over the area encircled by
contour. This implies the gauge invariance of the geome
phase. For the specific case when the variation is very s
g is simply proportional to the area swept out in the para
eter space. The geometric phase is plotted in Fig. 1~b! as a
function ofDV1 , with DV250, DV3 kept constant atV3

0/10,
andd5p/2. As we see,g behaves linearly asDV1 changes,
resulting from the fact that energy-dependent resonance
the QD are robust for the variation ofV1 . However, the
slope sensitively depends on whether we are on or off re
nance. Similarly, we plot the phaseg in Figs. 1~c! and 1~d!
as a function ofDV2 whenDV1 is kept constant atV1

0/10 and
DV350, with the incident energyE being off and on a reso
nance at the initial state, respectively. The oscillating beh
ior indicates thatg is quite sensitive to the presence of t
resonant levels inside the contour in the parameter sp
$V1 ,V2%, as displayed in the insets in Figs. 1~b!–1~d!. A
jump occurs in the geometric phase if the contour encircle
new transmission resonance.

Having described how the geometric phase appears
the scattering state using a QD, we now consider how
measure it experimentally. The experimental setup we p
pose is the double-path interferometer@see Fig. 1~a!#, which
previously was used to measure the phase evolution of e
trons as they traverse a QD.2,1 The measurement proceeds
follows. The system is prepared in some scattering state
incident energyE for certain initial values of the externa
parametersV1 , V2 , andV3 , which are controllable by ad
justing the Fermi level in the leads and the attached g
voltages, respectively. Then, the gate voltages are varied
cyclic manner and sufficiently slowly that the system alwa
remains in the instantaneous scattering state at any late
stantt. Electrons in the reference path and QD path interf
and are observed as oscillations in the current collected in
drain in the linear-response regime, i.e., in the presence
11330
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small bias across the QD. A crucial feature of the dev
here, in contrast to the experimental setups used to obs
adiabatic pumping currents,14 is that the reflected electron
are allowed to escape from the interferometer between
source and the drain, thus violating current conservat
This prevents multiple-scattering processes, required by
rent conservation, for the case of quantum adiabatic pu
ing. It is this feature that makes it possible to capture
effect of the geometric phases for scattering states.

The device we suggested above involves quantum in
ferometry of geometric phases in a mesoscopic open sys
This is similar to the Aharonov-Bohm effect, which leads
an oscillating periodic component in the current as a funct
of magnetic field applied.1,2,5 However, instead of the flux
produced by the external magnetic field, here the geome
phase results from the gauge field induced by the adiab
dynamics of the QD. The total device transmissionT result-
ing from the two-path interference after one periodT takes
the form

T5ut re fu21utQDu212ut re fuutQDucos~g1w12!. ~5!

Here t re f denotes the transmission coefficient for the ref
ence path, andw12 is the phase difference between the tw
transmission coefficientst re f and tQD , which only depends
on the initial scattering state. In fact, Eq.~5! is gauge invari-
ant, as it should be, and holds at any instantt as long as
t re f ,tQD , and g take the instantaneous values, because
transmissionT describes the current collected in the dra
and so is observable. However, we emphasize thatonly for
the whole periodT, g is gauge invariant and therefore ob
servable. One may recognize that the transmissionT in Eq.
~5! takes the same form as that at the initial instant, exc
for the involvement of the geometric phaseg in the last term.
Indeed, the first and second terms just provide a backgro
solely determined by the initial state, i.e., it does not depe
on which adiabatic cycle we choose. This is in contrast to
geometric phaseg which does depend on contours the sy
tem traverses in the parameter space.w12 also changes dur
ing the cycle, but is periodic inT. For different choices of the
phase differenced corresponding to different shapes of th
adiabatic cycles, the transmissionT varies considerably in
the entire energy range. From the experimental data for
interferometer reported by Schusteret al.,1 one may estimate
that the background termut re fu21utQDu2 is '1.05 and the
oscillating amplitude 2ut re fuutQDu is '0.05. Hence, for such
a device the deviation coming from the presence ofg would
be approximately 0.1. Thus, even at a relatively low visib
ity the effect from the scattering geometric phase should
observable. Figure 1 and Eq.~5! imply that the effect of the
geometric phaseg on the transmissionT is observable. An
important issue is that the dwell timetd is longer when the
QD is on resonance, so the frequency of the adiabatic va
tion, V, should be sufficiently slow to ensure the adiabatic
parametere[Vtd to be very small. We believe that curren
technology is sufficient to control the adiabatic dynamics
observe the effect of the geometric phase.

Now we explain how to modify the interference setup
observe the geometric phase associated with the true
8-3
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BRIEF REPORTS PHYSICAL REVIEW B69, 113308 ~2004!
Abelian gauge field which occurs in the context of adiaba
spin pumping. The geometric~matrix! phaseU, from Eq.~1!,
is a 232 matrix and results from the true non-Abelian gau
potential, which is the time-reversed counterpart of that st
ied in quantum spin pumping.12 Adopting the same notation
as those there, one sees that the non-Abelian gauge pote
takes the same form as Eq.~8! in Ref. 12, withf replaced by
2f. For a contour whenf varies from 0 to 2p with some
fixed u, we haveU5exp$ip@12cos(d12d2)#sin2us3/2%. In
this case, the non-Abelian character of the potential is los19

To observe the effect of the non-Abelian gauge field, it
necessary to choose a contour which varies bothu and f.
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The noncommutativity of the matrix form of the gauge p
tential presents some difficulties to explicitly calculate t
~matrix! phaseU. However, one may use the non-Abelia
version of Stokes’ theorem20 to evaluateU. Alternatively, in
numerical calculations, we can perform a straightforward
pansion of the path ordered exponential, Eq.~1!. The effect
of the geometric phase is seen from the gauge invar
transmission

T5Trut re f1UtSIu2, ~6!

with t re f andtSI being the 232 transmission coefficient ma
trices for the reference and spin-dependent interaction pa
respectively. The interference pattern of the two paths
changed due to the geometric phase.

Note that the relative intensity of the two paths for t
interferometer cannot be calculated theoretically, theref
we choose one specific value for the relative intensity. Unl
in the Abelian case, the non-Abelian geometric phaseU is
gauge dependent. Therefore we focus on the transmissio
Fig. 2 we plot transmission resulting from Eq.~6! as a func-
tion of k/G for a contour which is a spherical rectangle. T
parametersk,J, andG are defined in Ref. 12. The solid lin
presents results when the geometric phase is absent. A
inclusion of the geometric phase the transmission chan
significantly in both amplitude and shape. Especially, the t
peaks at the resonancesk/G56J/G shift due to an energy
splitting coming from the geometric phaseU, i.e., during the
adiabatic change the system moves out of resonance.

In summary, we developed a theory to describe geome
phases for scattering states, and generalized it to the s
dependent case. We have also proposed an experim
setup to directly observe the effect from the scattering g
metric phase. The effect should be large enough to be
tected in an open interferometer, and observed as oscillat
in the current across the device.
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