14 research outputs found

    Dynamics of polymer chain collapse into compact states

    Full text link
    Molecular dynamics simulation methods are used to study the folding of polymer chains into packed cubic states. The polymer model, based on a chain of linked sites moving in the continuum, includes both excluded volume and torsional interactions. Different native-state packing arrangements and chain lengths are explored; the organization of the native state is found to affect both the ability of the chain to fold successfully and the nature of the folding pathway as the system is gradually cooled. An order parameter based on contact counts is used to provide information about the folding process, with contacts additionally classified according to criteria such as core and surface sites or local and distant site pairs. Fully detailed contact maps and their evolution are also examined.Comment: 11 pages, 11 figures (some low resolution

    Flat histogram simulation of lattice polymer systems

    Full text link
    We demonstrate the use of a new algorithm called the Flat Histogram sampling algorithm for the simulation of lattice polymer systems. Thermodynamics properties, such as average energy or entropy and other physical quantities such as end-to-end distance or radius of gyration can be easily calculated using this method. Ground-state energy can also be determined. We also explore the accuracy and limitations of this method. Key words: Monte Carlo algorithms, flat histogram sampling, HP model, lattice polymer systemsComment: 7 RevTeX two-column page

    Identification of Amino Acid Sequences with Good Folding Properties in an Off-Lattice Model

    Full text link
    Folding properties of a two-dimensional toy protein model containing only two amino-acid types, hydrophobic and hydrophilic, respectively, are analyzed. An efficient Monte Carlo procedure is employed to ensure that the ground states are found. The thermodynamic properties are found to be strongly sequence dependent in contrast to the kinetic ones. Hence, criteria for good folders are defined entirely in terms of thermodynamic fluctuations. With these criteria sequence patterns that fold well are isolated. For 300 chains with 20 randomly chosen binary residues approximately 10% meet these criteria. Also, an analysis is performed by means of statistical and artificial neural network methods from which it is concluded that the folding properties can be predicted to a certain degree given the binary numbers characterizing the sequences.Comment: 15 pages, 8 Postscript figures. Minor change

    Compact phases of polymers with hydrogen bonding

    Full text link
    We propose an off-lattice model for a self-avoiding homopolymer chain with two different competing attractive interactions, mimicking the hydrophobic effect and the hydrogen bond formation respectively. By means of Monte Carlo simulations, we are able to trace out the complete phase diagram for different values of the relative strength of the two competing interactions. For strong enough hydrogen bonding, the ground state is a helical conformation, whereas with decreasing hydrogen bonding strength, helices get eventually destabilized at low temperature in favor of more compact conformations resembling β\beta-sheets appearing in native structures of proteins. For weaker hydrogen bonding helices are not thermodynamically relevant anymore.Comment: 5 pages, 3 figures; revised version published in PR

    Forward genetic screen of human transposase genomic rearrangements

    Get PDF
    BACKGROUND: Numerous human genes encode potentially active DNA transposases or recombinases, but our understanding of their functions remains limited due to shortage of methods to profile their activities on endogenous genomic substrates. RESULTS: To enable functional analysis of human transposase-derived genes, we combined forward chemical genetic hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1) screening with massively parallel paired-end DNA sequencing and structural variant genome assembly and analysis. Here, we report the HPRT1 mutational spectrum induced by the human transposase PGBD5, including PGBD5-specific signal sequences (PSS) that serve as potential genomic rearrangement substrates. CONCLUSIONS: The discovered PSS motifs and high-throughput forward chemical genomic screening approach should prove useful for the elucidation of endogenous genome remodeling activities of PGBD5 and other domesticated human DNA transposases and recombinases

    Computational identification of microRNA targets

    No full text
    Recent experiments have shown that the genomes of organisms such as worm, fly, human, and mouse encode hundreds of microRNA genes. Many of these microRNAs are thought to regulate the translational expression of other genes by binding to partially complementary sites in messenger RNAs. Phenotypic and expression analysis suggests an important role of microRNAs during development. Therefore, it is of fundamental importance to identify microRNA targets. However, no experimental or computational high-throughput method for target site identification in animals has been published yet. Our main result is a new computational method that is designed to identify microRNA target sites. This method recovers with high specificity known microRNA target sites that have previously been defined experimentally. Based on these results, we present a simple model for the mechanism of microRNA target site recognition. Our model incorporates both kinetic and thermodynamic components of target recognition. When we applied our method to a set of 74 Drosophila melanogaster microRNAs, searching 3'UTR sequences of a predefined set of fly mRNAs for target sites which were evolutionary conserved between D. melanogaster and Drosophila pseudoobscura, we found that many key developmental body patterning genes such as hairy and fushi-tarazu are likely to be translationally regulated by microRNAs

    The evolution of DNA regulatory regions for proteo-gamma bacteria by interspecies comparisons

    No full text
    The comparison of homologous noncoding DNA for organisms a suitable evolutionary distance apart is a powerful tool for the identification of cis regulatory elements for transcription and translation and for the study of how they assemble into functional modules. We have fit the three parameters of an affine global probabilistic alignment algorithm to establish the background mutation rate of noncoding sequence between E. coli and a series of gamma proteobacteria ranging from Salmonella to Vibrio. The lower bound we find to the neutral mutation rate is sufficiently high, even for Salmonella, that most of the conservation of noncoding sequence is indicative of selective pressures rather than of insufficient time to evolve. We then use a local version of the alignment algorithm combined with our inferred background mutation rate to assign a significance to the degree of local sequence conservation between orthologous genes, and thereby deduce a probability profile for the upstream regulatory region of all E. coli protein-coding genes. We recover 75%-85% (depending on significance level) of all regulatory sites from a standard compilation for E. coli, and 66%-85% of sigma sites. We also trace the evolution of known regulatory sites and the groups associated with a given transcription factor. Furthermore, we find that approximately one-third of paralogous gene pairs in E. coli have a significant degree of correlation in their regulatory sequence. Finally, we demonstrate an inverse correlation between the rate of evolution of transcription factors and the number of genes they regulate. Our predictions are available at http://www.physics.rockefeller.edu/~siggia
    corecore