7 research outputs found

    Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex

    Get PDF
    AbstractThe basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) modulate anxiety and social behaviors. It remains to be elucidated, however, whether direct projections from the BLA to the mPFC play a functional role in these behaviors. We used optogenetic approaches in behaving mice to either activate or inhibit BLA inputs to the mPFC during behavioral assays that assess anxiety-like behavior and social interaction. Channelrhodopsin-2 (ChR2)-mediated activation of BLA inputs to the mPFC produced anxiogenic effects in the elevated plus maze and open field test, whereas halorhodopsin (NpHR)-mediated inhibition produced anxiolytic effects. Furthermore, activation of the BLA-mPFC pathway reduced social interaction in the resident-intruder test, whereas inhibition facilitated social interaction. These results establish a causal relationship between activity in the BLA-mPFC pathway and the bidirectional modulation of anxiety-related and social behaviors

    Nomenclature of the finer branches of the biliary tree: Canals, ductules, and ductular reactions in human livers

    Get PDF
    The work of liver stem cell biologists, largely carried out in rodent models, has now started to manifest in human investigations and applications. We can now recognize complex regenerative processes in tissue specimens that had only been suspected for decades, but we also struggle to describe what we see in human tissues in a way that takes into account the findings from the animal investigations, using a language derived from species not, in fact, so much like our own. This international group of liver pathologists and hepatologists, most of whom are actively engaged in both clinical work and scientific research, seeks to arrive at a consensus on nomenclature for normal human livers and human reactive lesions that can facilitate more rapid advancement of our field. (HEPATOLOGY 2004; 39:1739–1745.) The fine detail of normal liver microanatomy is not well understood.1, 2 This is true whether discussing hepatic vasculature, bile ducts, stroma and matrix, innervation, or lymphatics. Some points are known, but gaps remain. The distal branches of the biliary tree are reasonably well defined: the common bile duct arises from confluence of the right and left hepatic ducts, which arise from segmental ducts, which arise from septal ducts arising from interlobular ducts.3 It is known that these interlobular ducts arise from still smaller cholangiocyte-lined structures and that the lumina of these in turn are in structural continuity with the lumen of hepatocellular bile canaliculi. But the terms used for these smallest, most proximal structures have been confusing

    Thyroid Nodule

    No full text

    True micas

    No full text

    Packaging for Bio-micro-electro-mechanical Systems (BioMEMS) and Microfluidic Chips

    No full text
    corecore