4 research outputs found
Ultrafast Nonlinear Optical Response of Strongly Correlated Systems: Dynamics in the Quantum Hall Effect Regime
We present a theoretical formulation of the coherent ultrafast nonlinear
optical response of a strongly correlated system and discuss an example where
the Coulomb correlations dominate. We separate out the correlated contributions
to the third-order nonlinear polarization, and identify non-Markovian dephasing
effects coming from the non-instantaneous interactions and propagation in time
of the collective excitations of the many-body system. We discuss the
signatures, in the time and frequency dependence of the four-wave-mixing (FWM)
spectrum, of the inter-Landau level magnetoplasmon (MP) excitations of the
two-dimensional electron gas (2DEG) in a perpendicular magnetic field. We
predict a resonant enhancement of the lowest Landau level (LL) FWM signal, a
strong non-Markovian dephasing of the next LL magnetoexciton (X), a symmetric
FWM temporal profile, and strong oscillations as function of time delay, of
quantum kinetic origin. We show that the correlation effects can be controlled
experimentally by tuning the central frequency of the optical excitation
between the two lowest LLs.Comment: 21 pages, 10 figure
Fermi-edge singularities in linear and non-linear ultrafast spectroscopy
We discuss Fermi-edge singularity effects on the linear and nonlinear
transient response of an electron gas in a doped semiconductor. We use a
bosonization scheme to describe the low energy excitations, which allows to
compute the time and temperature dependence of the response functions. Coherent
control of the energy absorption at resonance is analyzed in the linear regime.
It is shown that a phase-shift appears in the coherent control oscillations,
which is not present in the excitonic case. The nonlinear response is
calculated analytically and used to predict that four wave-mixing experiments
would present a Fermi-edge singularity when the exciting energy is varied. A
new dephasing mechanism is predicted in doped samples that depends linearly on
temperature and is produced by the low-energy bosonic excitations in the
conduction band.Comment: long version; 9 pages, 4 figure
Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals
In recent years, the search to develop large-area solar cells at low cost has led to research on photovoltaic (PV) systems based on nanocomposites containing conjugated polymers. These composite films can be synthesized and processed at lower costs and with greater versatility than the solid state inorganic semiconductors that comprise today's solar cells. However, the best nanocomposite solar cells are based on a complex architecture, consisting of a fine blend of interpenetrating and percolating donor and acceptor materials. Cell performance is strongly dependent on blend morphology, and solution-based fabrication techniques often result in uncontrolled and irreproducible blends, whose composite morphologies are difficult to characterize accurately. Here we incorporate three-dimensional hyperbranched colloidal semiconductor nanocrystals in solution-processed hybrid organic-inorganic solar cells, yielding reproducible and controlled nanoscale morphology