231 research outputs found

    On Dual Formulations of Massive Tensor Fields

    Full text link
    In this paper we investigate dual formulations for massive tensor fields. Usual procedure for construction of such dual formulations based on the use of first order parent Lagrangians in many cases turns out to be ambiguous. We propose to solve such ambiguity by using gauge invariant description of massive fields which works both in Minkowski space as well as (Anti) de Sitter spaces. We illustrate our method by two concrete examples: spin-2 "tetrad" field h_{\mu a}, the dual field being "Lorentz connection" \omega_{\mu,ab} and "Riemann" tensor R_{\mu\nu,ab} with the dual \Sigma_{\mu\nu,abc}.Comment: 9 pages, plain LaTe

    Gravitational cubic interactions for a massive mixed symmetry gauge field

    Full text link
    In a recent paper arXiv:1107.1872 cubic gravitational interactions for a massless mixed symmetry field in AdS space have been constructed. In the current paper we extend these results to the case of massive field. We work in a Fradkin-Vasiliev approach and use frame-like gauge invariant description for massive field which works in (A)dS spaces with arbitrary values of cosmological constant including flat Minkowski space. In this, massless limit in AdS space coincides with the results of arXiv:1107.1872 while we show that it is impossible to switch on gravitational interaction for massless field in dS space.Comment: 13 page

    On Dual Formulation of Gravity

    Full text link
    In this paper we consider a possibility to construct dual formulation of gravity where the main dynamical field is the Lorentz connection \omega_\mu^{ab} and not that of tetrad e_\mu^a or metric g_\mu\nu. Our approach is based on the usual dualization procedure which uses first order parent Lagrangians but in (Anti) de Sitter space and not in the flat Minkowski one. It turns out that in d=3 dimensions such dual formulation is related with the so called exotic parity-violating interactions for massless spin-2 particles.Comment: 7 pages, plain LaTe

    On spin 2 electromagnetic interactions

    Full text link
    In this paper we (re)consider the problem of electromagnetic interactions for massless spin 2 particles and show that in (A)dS(A)dS spaces with non-zero cosmological constant it is indeed possible (at least in linear approximation) to switch on minimal electromagnetic interactions supplemented by third derivative non-minimal ones which are necessary to restore gauge invariance.Comment: 5 pages, no figure

    Interactions between a massless tensor field with the mixed symmetry of the Riemann tensor and a massless vector field

    Full text link
    Consistent couplings between a massless tensor field with the mixed symmetry of the Riemann tensor and a massless vector field are analyzed in the framework of Lagrangian BRST cohomology. Under the assumptions on smoothness, locality, Lorentz covariance, and Poincare invariance of the deformations, combined with the requirement that the interacting Lagrangian is at most second-order derivative, it is proved that there are no consistent cross-interactions between a single massless tensor field with the mixed symmetry of the Riemann tensor and one massless vector field.Comment: LaTeX, 24 page

    On electromagnetic interactions for massive mixed symmetry field

    Full text link
    In this paper we investigate electromagnetic interactions for simplest massive mixed symmetry field. Using frame-like gauge invariant formulation we extend Fradkin-Vasiliev procedure, initially proposed for investigation of gravitational interactions for massless particles in AdS space, to the case of electromagnetic interactions for massive particles leaving in (A)dS space with arbitrary value of cosmological constant including flat Minkowski space. At first, as an illustration of general procedure, we re-derive our previous results on massive spin 2 electromagnetic interactions and then we apply this procedure to massive mixed symmetry field. These two cases are just the simplest representatives of two general class of fields, namely completely symmetric and mixed symmetry ones, and it is clear that the results obtained admit straightforward generalization to higher spins as well.Comment: 17 pages. Some clarifications added. Version to appear in JHE

    Comparison of repulsive interatomic potentials calculated with an all-electron DFT approach with experimental data

    Get PDF
    The interatomic potential determines the nuclear stopping power in materials. Most ion irradiation simulation models are based on the universal-Ziegler-Biersack-Littmark (ZBL) potential (Ziegler et a1.,1983), which, however, is an average and hence may not describe the stopping of all ion-material combinations well. Here we consider pair-specific interatomic potentials determined experimentally and by density functional theory simulations with DMol approach (DMol software, 1997) to choose basic wave functions. The interatomic potentials calculated using the DMol approach demonstrate an unexpectedly good agreement with experimental data. Differences are mainly observed for heavy atom systems, which suggests they can be improved by extending a basis set and more accurately considering the relativistic effects. Experimental data prove that the approach of determining interatomic potentials from quasielastic scattering can be successfully used for modeling collision cascades in ion-solids collisions. The data obtained clearly indicate that the use of any universal potential is limited to internuclear distances R <7 a(f) (a(f) is the Firsov length). (C) 2017 Published by Elsevier B.V.Peer reviewe

    On gravitational interactions for massive higher spins in AdS3AdS_3

    Full text link
    In this paper we investigate gravitational interactions of massive higher spin fields in three dimensional AdSAdS space with arbitrary value of cosmological constant including flat Minkowski space. We use frame-like gauge description for such massive fields adopted to three-dimensional case. At first, we carefully analyze the procedure of switching on gravitational interactions in the linear approximation on the example of massive spin-3 field and then proceed with the generalization to the case of arbitrary integer spin field. As a result we construct a cubic interaction vertex linear in spin-2 field and quadratic in higher spin field on AdS3AdS_3 background. As in the massless case the vertex does not contain any higher derivative corrections to the Lagrangian and/or gauge transformations. Thus, even after switching on gravitational interactions, one can freely consider any massless or partially massless limits as well as the flat one.Comment: 21 pages. Some clarifications and 1 new reference added. Version to appear in the J.Phys.A special volume on "Higher Spin Theories and AdS/CFT" edited by Matthias Gaberdiel and Mikhail Vasilie

    Spin 3 cubic vertices in a frame-like formalism

    Full text link
    Till now most of the results on interaction vertices for massless higher spin fields were obtained in a metric-like formalism using completely symmetric (spin-)tensors. In this, the Lagrangians turn out to be very complicated and the main reason is that the higher the spin one want to consider the more derivatives one has to introduce. In this paper we show that such investigations can be greatly simplified if one works in a frame-like formalism. As an illustration we consider massless spin 3 particle and reconstruct a number of vertices describing its interactions with lower spin 2, 1 and 0 ones. In all cases considered we give explicit expressions for the Lagrangians and gauge transformations and check that the algebra of gauge transformations is indeed closed.Comment: 17 pades, no figure

    No cross-interactions among different tensor fields with the mixed symmetry (3,1) intermediated by a vector field

    Full text link
    Under the hypotheses of analyticity in the coupling constant, locality, Lorentz covariance, and Poincare invariance of the deformations, combined with the preservation of the number of derivatives on each field, the consistent interactions between a collection of free massless tensor gauge fields with the mixed symmetry of a two-column Young diagram of the type (3,1) and one Abelian vector field, respectively a pp-form gauge field, are addressed. The main result is that a single mixed symmetry tensor field from the collection gets coupled to the vector field/pp-form. Our final result resembles to the well known fact from General Relativity according to which there is one graviton in a given world.Comment: 19 page
    corecore