350 research outputs found

    Similarity between the primary and secondary air-assisted liquid jet breakup mechanism

    Full text link
    we report an ultrafast synchrotron x-ray phase contrast imaging study of the primary breakup mechanism of a coaxial air-assisted water jet. We demonstrate that there exist great similarities in the phenomenology of primary breakup with that of the secondary breakup. Especially, a membrane-mediated breakup mechanism dominates the breakup process for a wide range of air speeds. This finding reveals the intrinsic connections of these two breakup regimes and has deep implications on the unified theoretical approach in treating the breakup mechanism of high speed liquid jet.Comment: 15 pages, 4 figure

    How has the Louisiana Scholarship Program Affected Students? A Comprehensive Summary of Effects after Four Years

    Get PDF
    School choice has long been a subject of robust debate. Private school vouchers—programs providing public funds for students to attend K-12 private schools—tend to be the most contentious form of school choice. Over the past three years, our research team has released a series of reports examining how the LSP has affected key student and community conditions

    The influence of lipids on the fate of nitrogen during hydrothermal liquefaction of protein-containing biomass

    Get PDF
    Nitrogen (N) in the bio-crude obtained from hydrothermal liquefaction (HTL) of protein-containing biomass not only reduces the heating value of fuels, but also increases cost for upgrading to meet the existing fuel standards. Considerable work so far had been focused on N-containing heterocycles formed via Maillard reactions. However, limited information is available on the influence of lipids, as the amides formation could compete with the Maillard reactions, further affecting the fate of N. The objective of this work is therefore to identify the influence of lipids on the nitrogen distribution in the different product phases, with a particular focus on the reaction of N-containing compounds, trying to achieve deeper understanding about reaction mechanism of HTL. In this study, we tested a set of model compounds (lactose as model carbohydrate, lysine as model protein, palmitic acid as model component of a lipid) to conduct HTL. The model compounds were treated individually and in mixtures at 250 - 350 °C for batch reaction times of 20 min. We investigated the N-distribution in the different HTL-products, mainly focusing on the bio-crude. At 300 °C, only 4.9 wt.% of N distribution (defined as the amount of N in the product relative to that in the feedstocks) is found from HTL of single lysine, while 43.6 wt.% of that is obtained from HTL of the ternary mixture. This is most likely because the higher yield (54.1wt.%) of bio-crude produced from mixture. Specific N-containing compounds in the bio-crude were quantified. With addition of lipids, less yields of typical Maillard reaction products like pyrazines and caprolactam, generated from HTL of carbohydrates and proteins, were obtained, while amides are revealed with significant yield of 2.1 wt.%, indicating that in the presence of lipids, amide formation competes with the generation of Maillard reaction products. These results provide valuable insights for the transformation of nitrogen as well as the reaction pathways of complex systems such as sewage sludge, micro algae, food waste and on the like

    How Surface Roughness Affects the Interparticle Interactions at a Liquid Interface

    Full text link
    Shapes of colloids matter at liquid interfaces. We explore the interactions between rough-surfaced nanocolloids at the air--water interface through the compaction of monolayers experimentally and numerically. Sufficiently rough systems exhibit a non-trivial intermediate state between a gas-like state and a close-packed jamming state due to roughness-induced capillary attraction. We also find that roughness-induced friction lowers the jamming point, and the tangential contact force owing to surface asperities can cause a gradual off-plane collapse of the compressed monolayer.Comment: 6+6 pages, 4+3 figures, 4 video

    Rapid detection of phosphine resistance in the lesser grain borer, Rhyzopertha dominica (Coleoptera: Bostrychidae) from China using ARMS-PCR: Poster

    Get PDF
    MThe lesser grain borer, Rhyzopertha dominica is one of the serious cosmopolitan stored grain pests worldwide. High phosphine resistant R. dominica has been reported in several countries. The evolution of strong phosphine resistance is a major challenge for continuous application of the fumigant. Rapid detection of phosphine resistance level is a prime key to implement an appropriate strategy for control the stored-product pests. Dihydrolipoamide dehydrogenase (DLD) is a key metabolic enzyme mediating the phosphine resistance in population of R. dominica, Tribolium castaneum and Caenorhabditis elegans. Analysis of the DLD sequences deposited in GenBank revealed that the P45/49S mutation was the most common one in many PH3-resistant stored-product pest insects. This information now enables direct detection of resistance using molecular diagnosis in field populations. We herein propose a method for rapid detection of phosphine resistance in R. dominica according to P49S point mutation of the DLD gene. Our data provides evidence that the ARMS-PCR method can be used for early warning of phosphine resistance in R. dominica in field conditions.MThe lesser grain borer, Rhyzopertha dominica is one of the serious cosmopolitan stored grain pests worldwide. High phosphine resistant R. dominica has been reported in several countries. The evolution of strong phosphine resistance is a major challenge for continuous application of the fumigant. Rapid detection of phosphine resistance level is a prime key to implement an appropriate strategy for control the stored-product pests. Dihydrolipoamide dehydrogenase (DLD) is a key metabolic enzyme mediating the phosphine resistance in population of R. dominica, Tribolium castaneum and Caenorhabditis elegans. Analysis of the DLD sequences deposited in GenBank revealed that the P45/49S mutation was the most common one in many PH3-resistant stored-product pest insects. This information now enables direct detection of resistance using molecular diagnosis in field populations. We herein propose a method for rapid detection of phosphine resistance in R. dominica according to P49S point mutation of the DLD gene. Our data provides evidence that the ARMS-PCR method can be used for early warning of phosphine resistance in R. dominica in field conditions

    Octet Quark Contents from SU(3) Flavor Symmetry

    Full text link
    With the parametrization of parton distribution functions (PDFs) of the proton by Soffer \textit{et al.}, we extend the valence quark contents to other octet baryons by utilizing SU(3) flavor symmetry. We find the method practically useful. Fragmentation functions (FFs) are further obtained through the phenomenological Gribov-Lipatov relation at the x1x \to 1 region. Our results are compared with different models, and these different predictions can be discriminated by upcoming experiments.Comment: 6 pages, 5 figures, final version for journal publicatio

    Land Use and Land Cover Affect the Depth Distribution of Soil Carbon: Insights From a Large Database of Soil Profiles

    Get PDF
    Soils contain a large and dynamic fraction of global terrestrial carbon stocks. The distribution of soil carbon (SC) with depth varies among ecosystems and land uses and is an important factor in calculating SC stocks and their vulnerabilities. Systematic analysis of SC depth distributions across databases of SC profiles has been challenging due to the heterogeneity of soil profile measurements, which vary in depth sampling. Here, we fit over 40,000 SC depth profiles to an exponential decline relationship with depth to determine SC concentration at the top of the mineral soil, minimum SC concentration at depth, and the characteristic “length” of SC concentration decline with depth. Fitting these parameters allowed profile characteristics to be analyzed across a large and heterogeneous dataset. We then assessed the differences in these depth parameters across soil orders and land cover types and between soil profiles with or without a history of tillage, as represented by the presence of an Ap horizon. We found that historically tilled soils had more gradual decreases of SC with depth (greater e-folding depth or Z∗), deeper SC profiles, lower SC concentrations at the top of the mineral soil, and lower total SC stocks integrated to 30 cm. The large database of profiles allowed these results to be confirmed across different land cover types and spatial areas within the Continental United States, providing robust evidence for systematic impacts of historical tillage on SC stocks and depth distributions

    Epigenetic dynamics shaping melanophore and iridophore cell fate in zebrafish

    Get PDF
    BACKGROUND: Zebrafish pigment cell differentiation provides an attractive model for studying cell fate progression as a neural crest progenitor engenders diverse cell types, including two morphologically distinct pigment cells: black melanophores and reflective iridophores. Nontrivial classical genetic and transcriptomic approaches have revealed essential molecular mechanisms and gene regulatory circuits that drive neural crest-derived cell fate decisions. However, how the epigenetic landscape contributes to pigment cell differentiation, especially in the context of iridophore cell fate, is poorly understood. RESULTS: We chart the global changes in the epigenetic landscape, including DNA methylation and chromatin accessibility, during neural crest differentiation into melanophores and iridophores to identify epigenetic determinants shaping cell type-specific gene expression. Motif enrichment in the epigenetically dynamic regions reveals putative transcription factors that might be responsible for driving pigment cell identity. Through this effort, in the relatively uncharacterized iridophores, we validate alx4a as a necessary and sufficient transcription factor for iridophore differentiation and present evidence on alx4a\u27s potential regulatory role in guanine synthesis pathway. CONCLUSIONS: Pigment cell fate is marked by substantial DNA demethylation events coupled with dynamic chromatin accessibility to potentiate gene regulation through cis-regulatory control. Here, we provide a multi-omic resource for neural crest differentiation into melanophores and iridophores. This work led to the discovery and validation of iridophore-specific alx4a transcription factor
    corecore