3 research outputs found

    Additional file 1: of SMITE: an R/Bioconductor package that identifies network modules by integrating genomic and epigenomic information

    No full text
    Supplementary Methods. Figure S1 Proportions of RNA-seq reads from T. gondii-infected HFFs aligning to a composite hg19/Toxoplasma genome. Figure S2 Comparison of distance weighting effect on gene scores. Figure S3 Representation of simulations demonstrating the effects on high scoring genes of variation of weightings. Figure S4 Comparison of gene scores with reduced and full SMITE models. Figure S5 Examples of modules generated by full and reduced SMITE models. Figure S6 KS test results comparing SMITE and FEM module genes and a random sampling of 10,000 genes. Figure S7 Comparison of the performance of the full SMITE model with the FEM model. Table S1 Criteria for defining genomic contexts in HFFs. Table S2 Weighting criteria used for SMITE analysis of the T. gondii HFF dataset. Appendix 1 R code for analyzing T. gondii HFF dataset with SMITE. Appendix 2 R code for analyzing T. gondii HFF dataset with FEM. Supplementary references (PDF 5642 kb

    Additional file 2: of SMITE: an R/Bioconductor package that identifies network modules by integrating genomic and epigenomic information

    No full text
    Supplementary Tables. Table S3 Gene symbol and score of the high scoring genes using three different methods: SMITE full model, SMITE reduced model, and FEM. Table S4 Modules discovered using FEM and genes composing the modules with their DNA methylation, expression, and overall statistics. Table S5 Modules discovered using the reduced model of SMITE (SMITE-R) with spin-glass. Table S6 Modules discovered using the full model of SMITE (SMITE-F) with spin-glass. Table S7 Pathways associated with the genes composing the modules discovered by FEM. Table S8 Pathways associated with the genes composing the modules discovered by the reduced model of SMITE (SMITE-R) using spin-glass. Table S9 Pathways associated with the genes composing the modules discovered by the full model of SMITE (SMITE-F) using spin-glass. Table S10 Quantifying the number of times pathways were found to be associated the modules discovered by either FEM, the reduced model of SMITE (SMITE-R) using spin-glass, or the full model of SMITE(SMITE-F) using spin-glass. Table S11 Genes composing the “summary network” found by either the reduced (SMITE-R) or full (SMITE-F) SMITE models using the Heinz algorithm. Table S12 Pathways associated with the genes composing the “summary network” discovered by the reduced model of SMITE(SMITE-R) using the Heinz algorithm. Table S13 Pathways associated with the genes composing the “summary network” discovered by the full model of SMITE (SMITE-F) using the Heinz algorithm. Table S14 Genes composing the “modules” found using no weights instead of weighting by distance. Table S15 Pathways associated with the genes in the modules identified without using distance weighting. (XLSX 269 kb
    corecore