3,006 research outputs found
A New Instrument For Measuring Student Beliefs About Physics and Learning Physics: The Colorado Learning Attitudes About Science Survey
The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure student beliefs about physics and about learning physics. This instrument extends previous work by probing additional aspects of student beliefs and by using wording suitable for students in a wide variety of physics courses. The CLASS has been validated using interviews, reliability studies, and extensive statistical analyses of responses from over 5000 students. In addition, a new methodology for determining useful and statistically robust categories of student beliefs has been developed. This paper serves as the foundation for an extensive study of how student beliefs impact and are impacted by their educational experiences. For example, this survey measures: that most teaching practices cause substantial drops in student scores; that a student's likelihood of becoming a physics major correlates with their 'Personal Interest' score; and that, for a majority of student populations, women's scores in some categories, including 'Personal Interest' and 'Real World Connections', are significantly different than men's scores
The Design and Validation of the Colorado Learning Attitudes about Science Survey
The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure various facets of student attitudes and beliefs about learning physics. This instrument extends previous work by probing additional facets of student attitudes and beliefs. It has been written to be suitably worded for students in a variety of different courses. This paper introduces the CLASS and its design and validation studies, which include analyzing results from over 2400 students, interviews and factor analyses. Methodology used to determine categories and how to analyze the robustness of categories for probing various facets of student learning are also described. This paper serves as the foundation for the results and conclusions from the analysis of our survey dat
Towards characterizing the relationship between students' interest in and their beliefs about physics
We examine the relationships between students' self-reported interest and their responses to a physics beliefs survey. Results from the Colorado Learning Attitudes about Science Survey (CLASS v3), collected in a large calculusbased introductory mechanics course (N=391), were used to characterize students' beliefs about physics and learning physics at the beginning and end of the semester. Additionally students were asked at the end of the semester to rate their interest in physics, how it has changed, and why. We find a correlation between surveyed beliefs and self-rated interest (R=0.65). At the end of the term, students with more expert-like beliefs as measured by the 'Overall' CLASS score also rate themselves as more interested in physics. An analysis of students' reasons for why their interest changed showed that a sizable fraction of students cited reasons tied to beliefs about physics or learning physics as probed by the CLASS survey. The leading reason for increased interest was the connection between physics and the real world
Correlating Student Beliefs With Student Learning Using The Colorado Learning Attitudes about Science Survey
A number of instruments have been designed to probe the variety of attitudes, beliefs, expectations, and epistemological frames taught in our introductory physics courses. Using a newly developed instrument -- the Colorado Learning Attitudes about Science Survey (CLASS)[1] -- we examine the relationship between students' beliefs about physics and other educational outcomes, such as conceptual learning and student retention. We report results from surveys of over 750 students in a variety of courses, including several courses modified to promote favorable beliefs about physics. We find positive correlations between particular student beliefs and conceptual learning gains, and between student retention and favorable beliefs in select categories. We also note the influence of teaching practices on student beliefs
Effects of fluctuations and Coulomb interaction on the transition temperature of granular superconductors
We investigate the suppression of superconducting transition temperature in
granular metallic systems due to (i) fluctuations of the order parameter
(bosonic mechanism) and (ii) Coulomb repulsion (fermionic mechanism) assuming
large tunneling conductance between the grains . We find the
correction to the superconducting transition temperature for 3 granular
samples and films. We demonstrate that if the critical temperature , where is the mean level spacing in a single grain the bosonic
mechanism is the dominant mechanism of the superconductivity suppression, while
for critical temperatures the suppression of
superconductivity is due to the fermionic mechanism.Comment: 12 pages, 9 figures, several sections clarifying the details of our
calculations are adde
One-dimensional collision carts computer model and its design ideas for productive experiential learning
We develop an Easy Java Simulation (EJS) model for students to experience the
physics of idealized one-dimensional collision carts. The physics model is
described and simulated by both continuous dynamics and discrete transition
during collision. In the field of designing computer simulations, we discuss
briefly three pedagogical considerations such as 1) consistent simulation world
view with pen paper representation, 2) data table, scientific graphs and
symbolic mathematical representations for ease of data collection and multiple
representational visualizations and 3) game for simple concept testing that can
further support learning. We also suggest using physical world setup to be
augmented complimentary with simulation while highlighting three advantages of
real collision carts equipment like tacit 3D experience, random errors in
measurement and conceptual significance of conservation of momentum applied to
just before and after collision. General feedback from the students has been
relatively positive, and we hope teachers will find the simulation useful in
their own classes. 2015 Resources added:
http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/46-one-dimension-collision-js-model
http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/195-elastic-collisionComment: 6 pages, 8 figures, 1 table, 1 L. K. Wee, Physics Education 47 (3),
301 (2012); ISSN 0031-912
Top Management Team Diversity: A systematic Review
Empirical research investigating the impact of top management team (TMT)
diversity on executives’ decision making has produced inconclusive results.
To synthesize and aggregate the results on the diversity-performance
link, a meta-regression analysis (MRA) is conducted. It integrates more
than 200 estimates from 53 empirical studies investigating TMT diversity
and its impact on the quality of executives’ decision making as reflected
in corporate performance. The analysis contributes to the literature by
theoretically discussing and empirically examining the effects of TMT diversity
on corporate performance. Our results do not show a link between TMT
diversity and performance but provide evidence for publication bias. Thus,
the findings raise doubts on the impact of TMT diversity on performance
Variation of the density of states in amorphous GdSi at the metal-insulator transition
We performed detailed conductivity and tunneling mesurements on the
amorphous, magnetically doped material -GdSi (GdSi), which
can be driven through the metal-insulator transition by the application of an
external magnetic field. Conductivity increases linearly with field near the
transition and slightly slower on the metallic side. The tunneling conductance,
proportional to the density of states , undergoes a gradual change with
increasing field, from insulating, showing a soft gap at low bias, with a
slightly weaker than parabolic energy dependence, i.e. , , towards metallic behavior, with , energy
dependence. The density of states at the Fermi level appears to be zero at low
fields, as in an insulator, while the sample shows already small, but
metal-like conductivity. We suggest a possible explanation to the observed
effect.Comment: 6 pages, 6 figure
Hubble Space Telescope Imaging of Lyman Alpha Emission at z=4.4
We present the highest redshift detections of resolved Lyman alpha emission,
using Hubble Space Telescope/ACS F658N narrowband-imaging data taken in
parallel with the Wide Field Camera 3 Early Release Science program in the
GOODS CDF-S. We detect Lyman alpha emission from three spectroscopically
confirmed z = 4.4 Lyman alpha emitting galaxies (LAEs), more than doubling the
sample of LAEs with resolved Lyman alpha emission. Comparing the light
distribution between the rest-frame ultraviolet continuum and narrowband
images, we investigate the escape of Lyman alpha photons at high redshift.
While our data do not support a positional offset between the Lyman alpha and
rest-frame ultraviolet (UV) continuum emission, the half-light radii in two out
of the three galaxies are significantly larger in Lyman alpha than in the
rest-frame UV continuum. This result is confirmed when comparing object sizes
in a stack of all objects in both bands. Additionally, the narrowband flux
detected with HST is significantly less than observed in similar filters from
the ground. These results together imply that the Lyman alpha emission is not
strictly confined to its indigenous star-forming regions. Rather, the Lyman
alpha emission is more extended, with the missing HST flux likely existing in a
diffuse outer halo. This suggests that the radiative transfer of Lyman alpha
photons in high-redshift LAEs is complicated, with the interstellar-medium
geometry and/or outflows playing a significant role in galaxies at these
redshifts.Comment: Submitted to the Astrophysical Journal. 11 pages, 10 figure
Initial Data and Coordinates for Multiple Black Hole Systems
We present here an alternative approach to data setting for spacetimes with
multiple moving black holes generalizing the Kerr-Schild form for rotating or
non-rotating single black holes to multiple moving holes. Because this scheme
preserves the Kerr-Schild form near the holes, it selects out the behaviour of
null rays near the holes, may simplify horizon tracking, and may prove useful
in computational applications. For computational evolution, a discussion of
coordinates (lapse function and shift vector) is given which preserves some of
the properties of the single-hole Kerr-Schild form
- …