20 research outputs found

    Quantum stability of self-organized atomic insulator-like states in optical resonators

    Get PDF
    We investigate a paradigm example of cavity quantum electrodynamics with many body systems: an ultracold atomic gas inside a pumped optical resonator. In particular, we study the stability of atomic insulator-like states, confined by the mechanical potential emerging from the cavity field spatial mode structure. As in open space, when the optical potential is sufficiently deep, the atomic gas is in the Mott-like state. Inside the cavity, however, the potential depends on the atomic distribution, which determines the refractive index of the medium, thus altering the intracavity field amplitude. We derive the effective Bose-Hubbard model describing the physics of the system in one dimension and study the crossover between the superfluid -- Mott insulator quantum states. We determine the regions of parameters where the atomic insulator states are stable, and predict the existence of overlapping stability regions corresponding to competing insulator-like states. Bistable behavior, controlled by the pump intensity, is encountered in the vicinity of the shifted cavity resonance.Comment: 13 pages, 6 figures. Replaced with revised version. Accepted for publication in New J. Phys., special issue "Quantum correlations in tailord matter

    Bandgaps in the propagation and scattering of surface water waves over cylindrical steps

    Full text link
    Here we investigate the propagation and scattering of surface water waves by arrays of bottom-mounted cylindrical steps. Both periodic and random arrangements of the steps are considered. The wave transmission through the arrays is computed using the multiple scattering method based upon a recently derived formulation. For the periodic case, the results are compared to the band structure calculation. We demonstrate that complete band gaps can be obtained in such a system. Furthermore, we show that the randomization of the location of the steps can significantly reduce the transmission of water waves. Comparison with other systems is also discussed.Comment: 4 pages, 3 figure

    Limitations on the superposition principle: superselection rules in non-relativistic quantum mechanics

    Get PDF
    The superposition principle is a very basic ingredient of quantum theory. What may come as a surprise to many students, and even to many practitioners of the quantum craft, is tha superposition has limitations imposed by certain requirements of the theory. The discussion of such limitations arising from the so-called superselection rules is the main purpose of this paper. Some of their principal consequences are also discussed. The univalence, mass and particle number superselection rules of non-relativistic quantum mechanics are also derived using rather simple methods.Comment: 22 pages, no figure

    Dilute gas of ultracold two-level atoms inside a cavity; generalized Dicke model

    Full text link
    We consider a gas of ultracold two-level atoms confined in a cavity, taking into account for atomic center-of-mass motion and cavity mode variations. We use the generalized Dicke model, and analyze separately the cases of a Gaussian, and a standing wave mode shape. Owing to the interplay between external motional energies of the atoms and internal atomic and field energies, the phase-diagrams exhibit novel features not encountered in the standard Dicke model, such as the existence of first and second order phase transitions between normal and superradiant phases. Due to the quantum description of atomic motion, internal and external atomic degrees of freedom are highly correlated leading to modified normal and superradiant phases.Comment: 10 pages, 7 figure

    Recent advances in Dirac spin-gapless semiconductors

    No full text

    Liquid and Solid Phases of He

    No full text

    Older adults’ perspectives on HIV/AIDS prevention strategies for rural Kenya

    Get PDF
    Though prevention of HIV/AIDS is the mainstay of various responses to the epidemic,communication strategies used to motivate behavior change are challenged for lack of cultural appropriateness, hence the lack of success. Participatory communication that is culture-centered and culturally sensitive is emphasized in HIV/AIDS communication to engage affected communities in defining problems and finding appropriate solutions. This paper examines the views of older adults as key targets in HIV/AIDS prevention given the increasing number of elderly living with the disease and their changing role as caregivers of those infected and affected by HIV. As cultural, social, political, and opinion leaders in rural communities, older adults are in a position to influence attitudes and behaviors of their community members, but they have not been involved in the current HIV/AIDS prevention interventions. Several recommendations were made to inform the design and implementation of a culture-specific prevention program for rural Kenya
    corecore