1,459 research outputs found

    Realization of the Large Mixing Angle Solar Neutrino Solution in an SO(10) Supersymmetric Grand Unified Model

    Get PDF
    An SO(10) supersymmetric grand unified model proposed earlier leading to the solar solution involving ``just-so'' vacuum oscillations is reexamined to study its ability to obtain the other possible solar solutions. It is found that all four viable solar neutrino oscillation solutions can be achieved in the model simply by modification of the right-handed Majorana neutrino mass matrix, M_R. Whereas the small mixing and vacuum solutions are easily obtained with several texture zeros in M_R, the currently-favored large mixing angle solution requires a nearly geometric hierarchical form for M_R that leads by the seesaw formula to a light neutrino mass matrix which has two or three texture zeros. The form of the matrix which provides the ``fine-tuning'' necessary to achieve the large mixing angle solution can be understood in terms of Froggatt-Nielsen diagrams for the Dirac and right-handed Majorana neutrino mass matrices. The solution fulfils several leptogenesis requirements which in turn can be responsible for the baryon asymmetry in the universe.Comment: 14 pages including 2 figure

    Electronic structure and the glass transition in pnictide and chalcogenide semiconductor alloys. Part I: The formation of the ppσpp\sigma-network

    Full text link
    Semiconductor glasses exhibit many unique optical and electronic anomalies. We have put forth a semi-phenomenological scenario (J. Chem. Phys. 132, 044508 (2010)) in which several of these anomalies arise from deep midgap electronic states residing on high-strain regions intrinsic to the activated transport above the glass transition. Here we demonstrate at the molecular level how this scenario is realized in an important class of semiconductor glasses, namely chalcogen and pnictogen containing alloys. Both the glass itself and the intrinsic electronic midgap states emerge as a result of the formation of a network composed of σ\sigma-bonded atomic pp-orbitals that are only weakly hybridized. Despite a large number of weak bonds, these ppσpp\sigma-networks are stable with respect to competing types of bonding, while exhibiting a high degree of structural degeneracy. The stability is rationalized with the help of a hereby proposed structural model, by which ppσpp\sigma-networks are symmetry-broken and distorted versions of a high symmetry structure. The latter structure exhibits exact octahedral coordination and is fully covalently-bonded. The present approach provides a microscopic route to a fully consistent description of the electronic and structural excitations in vitreous semiconductors.Comment: 22 pages, 17 figures, revised version, final version to appear in J. Chem. Phy

    Texture of fermion mass matrices in partially unified theories

    Get PDF
    We investigate the texture of fermion mass matrices in theories with partial unification (for example SU(2)L×SU(2)R×SU(4)c SU(2)_L\times SU(2)_R\times SU(4)_c) at a scale 1012\sim 10^{12} GeV. Starting with the low energy values of the masses and the mixing angles, we find only two viable textures with atmost four texture zeros. One of these corresponds to a somewhat modified Fritzsch textures. A theoretical derivataion of these textures leads to new interesting relations among the masses and the mixing angles.Comment: 10 pages(Latex

    Antisymmetric Higgs representation in SO(10) for neutrinos

    Get PDF
    A Model based on SO(10) grand unified theory (GUT) and supersymmetry is presented to describe observed phenomena for neutrinos. The large mixing angles among different generations, together with the small masses, are attributed to the Higgs boson structure at the GUT energy scale. Quantitative discussions for these observables are given, taking into account their energy evolution.Comment: 10 page

    Lepton Flavour Violation in a Class of Lopsided SO(10) Models

    Full text link
    A class of predictive SO(10) grand unified theories with highly asymmetric mass matrices, known as lopsided textures, has been developed to accommodate the observed mixing in the neutrino sector. The model class effectively determines the rate for charged lepton flavour violation, and in particular the branching ratio for μ>eγ\mu -> e \gamma, assuming that the supersymmetric GUT breaks directly to the constrained minimal supersymmetric standard model (CMSSM). We find that in light of the combined constraints on the CMSSM parameters from direct searches and from the WMAP satellite observations, the resulting predicted rate for μ>eγ\mu -> e \gamma in this model class can be within the current experimental bounds for low tanβ\tan \beta, but that the next generation of μ>eγ\mu -> e \gamma experiments would effectively rule out this model class if LFV is not detected.Comment: 23 page

    Streamer Propagation as a Pattern Formation Problem: Planar Fronts

    Get PDF
    Streamers often constitute the first stage of dielectric breakdown in strong electric fields: a nonlinear ionization wave transforms a non-ionized medium into a weakly ionized nonequilibrium plasma. New understanding of this old phenomenon can be gained through modern concepts of (interfacial) pattern formation. As a first step towards an effective interface description, we determine the front width, solve the selection problem for planar fronts and calculate their properties. Our results are in good agreement with many features of recent three-dimensional numerical simulations.Comment: 4 pages, revtex, 3 ps file

    Lepton Flavor Violation in the SUSY-GUT Models with Lopsided Mass Matrix

    Full text link
    The tiny neutrino masses measured in the neutrino oscillation experiments can be naturally explained by the supersymmetric see-saw mechanism. If the supersymmetry breaking is mediated by gravity, the see-saw models may predict observable lepton flavor violating effects. In this work, we investigate the lepton flavor violating process μeγ\mu\to e\gamma in the kind of neutrino mass models based on the idea of the ``lopsided'' form of the charged lepton mass matrix. The constraints set by the muon anomalous magnetic moment are taken into account. We find the present models generally predict a much larger branching ratio of μeγ\mu\to e\gamma than the experimental limit. Conversely, this process may give strong constraint on the lepton flavor structure. Following this constraint we then find a new kind of the charged lepton mass matrix. The feature of the structure is that both the elements between the 2-3 and 1-3 generations are ``lopsided''. This structure produces a very small 1-3 mixing and a large 1-2 mixing in the charged lepton sector, which naturally leads to small Br(μeγ)Br(\mu\to e\gamma) and the LMA solution for the solar neutrino problem.Comment: 24 pages, 8 figure

    Nucleon to Delta Weak Excitation Amplitudes in the Non-relativistic Quark Model

    Full text link
    We investigate the nucleon to Delta(1232) vector and axial vector amplitudes in the non-relativistic quark model of the Isgur-Karl variety. A particular interest is to investigate the SU(6) symmetry breaking, due to color hyperfine interaction. We compare the theoretical estimates to recent experimental investigation of the Adler amplitudes by neutrino scattering.Comment: \documentstyle[aps]{revtex}, 21pages; 11 postscript figures. Accepted for publication by Phys. Rev.
    corecore