195 research outputs found
Re-weighting of somatosensory inputs from the foot and the ankle for controlling posture during quiet standing following trunk extensor muscles fatigue
The present study focused on the effects of trunk extensor muscles fatigue on
postural control during quiet standing under different somatosensory conditions
from the foot and the ankle. With this aim, 20 young healthy adults were asked
to stand as immobile as possible in two conditions of No fatigue and Fatigue of
trunk extensor muscles. In Experiment 1 (n = 10), somatosensation from the foot
and the ankle was degraded by standing on a foam surface. In Experiment 2 (n =
10), somatosensation from the foot and ankle was facilitated through the
increased cutaneous feedback at the foot and ankle provided by strips of
athletic tape applied across both ankle joints. The centre of foot pressure
displacements (CoP) were recorded using a force platform. The results showed
that (1) trunk extensor muscles fatigue increased CoP displacements under
normal somatosensatory conditions (Experiment 1 and Experiment 2), (2) this
destabilizing effect was exacerbated when somatosensation from the foot and the
ankle was degraded (Experiment 1), and (3) this destabilizing effect was
mitigated when somatosensation from the foot and the ankle was facilitated
(Experiment 2). Altogether, the present findings evidenced re-weighting of
sensory cues for controlling posture during quiet standing following trunk
extensor muscles fatigue by increasing the reliance on the somatosensory inputs
from the foot and the ankle. This could have implications in clinical and
rehabilitative areas
Differential postural effects of plantar-flexor muscles fatigue under normal, altered and improved vestibular and neck somatosensory conditions
The aim of the present study was to assess the effects of plantar-flexor
muscles fatigue on postural control during quiet standing under normal, altered
and improved vestibular and neck somatosensory conditions. To address this
objective, young male university students were asked to stand upright as still
as possible with their eyes closed in two conditions of No Fatigue and Fatigue
of the plantar-flexor muscles. In Experiment 1 (n=15), the postural task was
executed in two Neutral head and Head tilted backward postures, recognized to
degrade vestibular and neck somatosensory information. In Experiment 2 (n=15),
the postural task was executed in two conditions of No tactile and Tactile
stimulation of the neck provided by the application of strips of adhesive
bandage to the skin over and around the neck. Centre of foot pressure
displacements were recorded using a force platform. Results showed that (1) the
Fatigue condition yielded increased CoP displacements relative to the No
Fatigue condition (Experiment 1 and Experiment 2), (2) this destabilizing
effect was more accentuated in the Head tilted backward posture than Neutral
head posture (Experiment 1) and (3) this destabilizing effect was less
accentuated in the condition of Tactile stimulation than that of No tactile
stimulation of the neck (Experiment 2). In the context of the multisensory
control of balance, these results suggest an increased reliance on vestibular
and neck somatosensory information for controlling posture during quiet
standing in condition of altered ankle neuromuscular function
Can a Plantar Pressure-Based Tongue-Placed Electrotactile Biofeedback Improve Postural Control Under Altered Vestibular and Neck Proprioceptive Conditions?
We investigated the effects of a plantar pressure-based tongue-placed
electrotactile biofeedback on postural control during quiet standing under
normal and altered vestibular and neck proprioceptive conditions. To achieve
this goal, fourteen young healthy adults were asked to stand upright as
immobile as possible with their eyes closed in two Neutral and Extended head
postures and two conditions of No-biofeedback and Biofeedback. The underlying
principle of the biofeedback consisted of providing supplementary information
related to foot sole pressure distribution through a wireless embedded
tongue-placed tactile output device. Centre of foot pressure (CoP)
displacements were recorded using a plantar pressure data acquisition system.
Results showed that (1) the Extended head posture yielded increased CoP
displacements relative to the Neutral head posture in the No-biofeedback
condition, with a greater effect along the anteroposterior than mediolateral
axis, whereas (2) no significant difference between the two Neutral and
Extended head postures was observed in the Biofeedback condition. The present
findings suggested that the availability of the plantar pressure-based
tongue-placed electrotactile biofeedback allowed the subjects to suppress the
destabilizing effect induced by the disruption of vestibular and neck
proprioceptive inputs associated with the head extended posture. These results
are discussed according to the sensory re-weighting hypothesis, whereby the
central nervous system would dynamically and selectively adjust the relative
contributions of sensory inputs (i.e., the sensory weights) to maintain upright
stance depending on the sensory contexts and the neuromuscular constraints
acting on the subject
How a plantar pressure-based, tongue-placed tactile biofeedback modifies postural control mechanisms during quiet standing
The purpose of the present study was to determine the effects of a plantar
pressure-based, tongue-placed tactile biofeedback on postural control
mechanisms during quiet standing. To this aim, sixteen young healthy adults
were asked to stand as immobile as possible with their eyes closed in two
conditions of No-biofeedback and Biofeedback. Centre of foot pressure (CoP)
displacements, recorded using a force platform, were used to compute the
horizontal displacements of the vertical projection the centre of gravity
(CoGh) and those of the difference between the CoP and the vertical projection
of the CoG (CoP-CoGv). Altogether, the present findings suggest that the main
way the plantar pressure-based, tongue-placed tactile biofeedback improves
postural control during quiet standing is via both a reduction of the
correction thresholds and an increased efficiency of the corrective mechanism
involving the CoGh displacements
Conception and evaluation of a 3D musculoskeletal finite element foot model.
International audienceThis paper introduces a new patient-specific musculoskeletal and Finite Element (FE) model of the foot aimed to be used in the context of deep pressure ulcer prevention, orthopedic and motion analysis. This model is evaluated in both static and dynamic frameworks
- …