4 research outputs found

    Combining infrared thermography and UAV digital photogrammetry for the protection and conservation of rupestrian cultural heritage sites in Georgia: A methodological application

    No full text
    The rock-cut city of Vardzia is an example of the extraordinary rupestrian cultural heritage of Georgia. The site, Byzantine in age, was carved in the steep tuff slopes of the Erusheti mountains, and due to its peculiar geological characteristics, it is particularly vulnerable to weathering and degradation, as well as frequent instability phenomena. These problems determine serious constraints on the future conservation of the site, as well as the safety of the visitors. This paper focuses on the implementation of a site-specific methodology, based on the integration of advanced remote sensing techniques, such as InfraRed Thermography (IRT) and Unmanned Aerial Vehicle (UAV)-based Digital Photogrammetry (DP), with traditional field surveys and laboratory analyses, with the aim of mapping the potential criticality of the rupestrian complex on a slope scale. The adopted methodology proved to be a useful tool for the detection of areas of weathering and degradation on the tuff cliffs, such as moisture and seepage sectors related to the ephemeral drainage network of the slope. These insights provided valuable support for the design and implementation of sustainable mitigation works, to be profitably used in the management plan of the site of Vardzia, and can be used for the protection and conservation of rupestrian cultural heritage sites characterized by similar geological contexts

    Landslide hazard, monitoring and conservation strategy for the safeguard of Vardzia Byzantine monastery complex, Georgia

    Get PDF
    This paper reports preliminary results of a feasibility project developed in cooperation with National Agency for Cultural Heritage Preservation of Georgia, and aimed at envisaging the stability conditions of the Vardzia monastery slope (rupestrian city cave in the south-western Georgia). The aim is the implementation of a low-impact monitoring system together with long-term mitigation/conservation policies. A field analysis was conducted to reconstruct geometry of the rocky cliff, characteristics of discontinuities, main failure modes, and volume of potential unstable blocks and geomechanical parameters. Instability processes are the combination of causative factors such as the following: lithology, frequency and orientation of discontinuities, slope orientation, physical and mechanical characteristics of slope-forming materials, and morphological and hydrological boundary conditions. The combined adoption of different survey techniques (e.g., 3D laser scanner, ground-based radar interferometry) could be the best solution in the interdisciplinary field of cultural heritage preservation policies. The collected data will be the basis for future activities to be completed in collaboration with local authorities for a complete hazard and risk characterization for the monastery site and the development of an early warning system to allow safe exploitation for touristic activities and for historical site preservatio

    Landslide hazard, monitoring and conservation strategy for the safeguard of Vardzia Byzantine monastery complex, Georgia

    No full text
    This paper reports preliminary results of a feasibility project developed in cooperation with National Agency for Cultural Heritage Preservation of Georgia, and aimed at envisaging the stability conditions of the Vardzia monastery slope (rupestrian city cave in the south-western Georgia). The aim is the implementation of a low-impact monitoring system together with long-term mitigation/conservation policies. A field analysis was conducted to reconstruct geometry of the rocky cliff, characteristics of discontinuities, main failure modes, and volume of potential unstable blocks and geomechanical parameters. Instability processes are the combination of causative factors such as the following: lithology, frequency and orientation of discontinuities, slope orientation, physical and mechanical characteristics of slope-forming materials, and morphological and hydrological boundary conditions. The combined adoption of different survey techniques (e.g., 3D laser scanner, ground-based radar interferometry) could be the best solution in the interdisciplinary field of cultural heritage preservation policies. The collected data will be the basis for future activities to be completed in collaboration with local authorities for a complete hazard and risk characterization for the monastery site and the development of an early warning system to allow safe exploitation for touristic activities and for historical site preservation
    corecore