204 research outputs found

    Superfluid-Superfluid Phase Transitions in Two-Component Bose System

    Get PDF
    Depending on the Hamiltonian parameters, two-component bosons in an optical lattice can form at least three different superfluid phases in which both components participate in the superflow: a (strongly interacting) mixture of two miscible superfluids (2SF), a paired superfluid vacuum (PSF), and (at a commensurate total filling factor) the super-counter-fluid state (SCF). We study universal properties of the 2SF-PSF and 2SF-SCF quantum phase transitions and show that (i) they can be mapped onto each other, and (ii) their universality class is identical to the (d+1)-dimensional normal-superfluid transition in a single-component liquid. Finite-temperature 2SF-PSF(SCF) transitions and the topological properties of 2SF-PSF(SCF) interfaces are also discussed.Comment: 4pages, 2 figures, REVTe

    The Stochastic Green Function (SGF) algorithm

    Full text link
    We present the Stochastic Green Function (SGF) algorithm designed for bosons on lattices. This new quantum Monte Carlo algorithm is independent of the dimension of the system, works in continuous imaginary time, and is exact (no error beyond statistical errors). Hamiltonians with several species of bosons (and one-dimensional Bose-Fermi Hamiltonians) can be easily simulated. Some important features of the algorithm are that it works in the canonical ensemble and gives access to n-body Green functions.Comment: 12 pages, 5 figure

    Revealing Superfluid--Mott-Insulator Transition in an Optical Lattice

    Get PDF
    We study (by an exact numerical scheme) the single-particle density matrix of ∼103\sim 10^3 ultracold atoms in an optical lattice with a parabolic confining potential. Our simulation is directly relevant to the interpretation and further development of the recent pioneering experiment by Greiner et al. In particular, we show that restructuring of the spatial distribution of the superfluid component when a domain of Mott-insulator phase appears in the system, results in a fine structure of the particle momentum distribution. This feature may be used to locate the point of the superfluid--Mott-insulator transition.Comment: 4 pages (12 figures), Latex. (A Latex macro is corrected

    From Popov-Fedotov trick to universal fermionization

    Full text link
    We show that Popov-Fedotov trick of mapping spin-1/2 lattice systems on two-component fermions with imaginary chemical potential readily generalizes to bosons with a fixed (but not limited) maximal site occupation number, as well as to fermionic Hamiltonians with various constraints on the site Fock states. In a general case, the mapping---fermionization---is on multi-component fermions with many-body non-Hermitian interactions. Additionally, the fermionization approach allows one to convert large many-body couplings into single-particle energies, rendering the diagrammatic series free of large expansion parameters; the latter is essential for the efficiency and convergence of the diagrammatic Monte Carlo method.Comment: 4 pages, no figures (v2 contains some improvements; the most important one is the generic complex chemical potential trick for spins/bosons

    Frustrated spin model as a hard-sphere liquid

    Get PDF
    We show that one-dimensional topological objects (kinks) are natural degrees of freedom for an antiferromagnetic Ising model on a triangular lattice. Its ground states and the coexistence of spin ordering with an extensive zero-temperature entropy can be easily understood in terms of kinks forming a hard-sphere liquid. Using this picture we explain effects of quantum spin dynamics on that frustrated model, which we also study numerically.Comment: 5 pages, 3 figure

    Absence of a Direct Superfluid to Mott Insulator Transition in Disordered Bose Systems

    Get PDF
    We prove the absence of a direct quantum phase transition between a superfluid and a Mott insulator in a bosonic system with generic, bounded disorder. We also prove compressibility of the system on the superfluid--insulator critical line and in its neighborhood. These conclusions follow from a general {\it theorem of inclusions} which states that for any transition in a disordered system one can always find rare regions of the competing phase on either side of the transition line. Quantum Monte Carlo simulations for the disordered Bose-Hubbard model show an even stronger result, important for the nature of the Mott insulator to Bose glass phase transition: The critical disorder bound, Δc\Delta_c, corresponding to the onset of disorder-induced superfluidity, satisfies the relation Δc>Eg/2\Delta_c > E_{\rm g/2}, with Eg/2E_{\rm g/2} the half-width of the Mott gap in the pure system.Comment: 4 pages, 3 figures; replaced with resubmitted versio

    Vortex-Phonon Interaction in the Kosterlitz-Thouless Theory

    Get PDF
    The "canonical" variables of the Kosterlitz-Thouless theory--fields Φ0(r)\Phi_0({\bf r}) and ϕ(r)\phi({\bf r}), generally believed to stand for vortices and phonons (or their XY equivalents, like spin waves, etc.) turn out to be neither vortices and phonons, nor, strictly speaking, {\it canonical} variables. The latter fact explains paradoxes of (i) absence of interaction between Φ0\Phi_0 and ϕ\phi, and (ii) non-physical contribution of small vortex pairs to long-range phase correlations. We resolve the paradoxes by explicitly relating Φ0\Phi_0 and ϕ\phi to canonical vortex-pair and phonon variables.Comment: 4 pages, RevTe

    Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipole systems

    Get PDF
    The superfluid to normal fluid transition of dipolar bosons in two dimensions is studied throughout the whole density range using path integral Monte Carlo simulations and summarized in the phase diagram. While at low densities, we find good agreement with the universal results depending only on the scattering length asa_s, at moderate and high densities, the transition temperature is strongly affected by interactions and the elementary excitation spectrum. The results are expected to be of relevance to dipolar atomic and molecular systems and indirect excitons in quantum wells

    Superfluid--Insulator Transition in Commensurate One-Dimensional Bosonic System with Off-Diagonal Disorder

    Get PDF
    We study the nature of the superfluid--insulator quantum phase transition in a one-dimensional system of lattice bosons with off-diagonal disorder in the limit of large integer filling factor. Monte Carlo simulations of two strongly disordered models show that the universality class of the transition in question is the same as that of the superfluid--Mott-insulator transition in a pure system. This result can be explained by disorder self-averaging in the superfluid phase and applicability of the standard quantum hydrodynamic action. We also formulate the necessary conditions which should be satisfied by the stong-randomness universality class, if one exists.Comment: 4 pages, 4 figures. Typo in figure 4 of ver. 3 is correcte

    Superfluid--Insulator Transition in Commensurate Disordered Bosonic Systems:Large-Scale Worm-Algorithm Simulations

    Get PDF
    We report results of large-scale Monte Carlo simulations of superfluid--insulator transitions in commensurate 2D bosonic systems. In the case of off-diagonal disorder (quantum percolation), we find that the transition is to a gapless incompressible insulator, and its dynamical critical exponent is z=1.65±0.2z=1.65 \pm 0.2. In the case of diagonal disorder, we prove the conjecture that rare statistical fluctuations are inseparable from critical fluctuations on the largest scales and ultimately result in the crossover to the generic universality class (apparently with z=2z=2). However, even at strong disorder, the universal behavior sets in only at very large space-time distances. This explains why previous studies of smaller clusters mimicked a direct superfluid--Mott-insulator transition.Comment: 6 pages, Latex, 7 figure
    • …
    corecore