282 research outputs found

    Asymptotic homogenisation in strength and fatigue durability analysis of composites

    Get PDF
    This is the post-print version of the Article. Copyright @ 2003 Kluwer Academic Publishers.Asymptotic homogenisation technique and two-scale convergence is used for analysis of macro-strength and fatigue durability of composites with a periodic structure under cyclic loading. The linear damage accumulation rule is employed in the phenomenological micro-durability conditions (for each component of the composite) under varying cyclic loading. Both local and non-local strength and durability conditions are analysed. The strong convergence of the strength as the structure period tends to zero is proved and its limiting value is estimated.This work was supported under the research grant GR/M24592 from the Engineering and Physical Sciences Research Council, UK

    Crossover from time-correlated single-electron tunneling to that of Cooper pairs

    Full text link
    We have studied charge transport in a one-dimensional chain of small Josephson junctions using a single-electron transistor. We observe a crossover from time-correlated tunneling of single electrons to that of Cooper pairs as a function of both magnetic field and current. At relatively high magnetic field, single-electron transport dominates and the tunneling frequency is given by f=I/e, where I is the current through the chain and e is the electron's charge. As the magnetic field is lowered, the frequency gradually shifts to f=I/2e for I>200 fA, indicating Cooper-pair transport. For the parameters of the measured sample, we expect the Cooper-pair transport to be incoherent.Comment: 5 pages, 4 figures; v2: minor changes, clarifications, addition

    Shot Noise of Single-Electron Tunneling in 1D Arrays

    Full text link
    We have used numerical modeling and a semi-analytical calculation method to find the low frequency value S_{I}(0) of the spectral density of fluctuations of current through 1D arrays of small tunnel junctions, using the ``orthodox theory'' of single-electron tunneling. In all three array types studied, at low temperature (kT << eV), increasing current induces a crossover from the Schottky value S_{I}(0)=2e to the ``reduced Schottky value'' S_{I}(0)=2e/N (where N is the array length) at some crossover current I_{c}. In uniform arrays over a ground plane, I_{c} is proportional to exp(-\lambda N), where 1/\lambda is the single-electron soliton length. In arrays without a ground plane, I_{c} decreases slowly with both N and \lambda. Finally, we have calculated the statistics of I_{c} for ensembles of arrays with random background charges. The standard deviation of I_{c} from the ensemble average is quite large, typically between 0.5 and 0.7 of , while the dependence of on N or \lambda is so weak that it is hidden within the random fluctuations of the crossover current.Comment: RevTex. 21 pages of text, 10 postscript figure

    Classical-to-stochastic Coulomb blockade cross-over in aluminum arsenide wires

    Full text link
    We report low-temperature differential conductance measurements in aluminum arsenide cleaved-edge overgrown quantum wires in the pinch-off regime. At zero source-drain bias we observe Coulomb blockade conductance resonances that become vanishingly small as the temperature is lowered below 250mK250 {\rm mK}. We show that this behavior can be interpreted as a classical-to-stochastic Coulomb blockade cross-over in a series of asymmetric quantum dots, and offer a quantitative analysis of the temperature-dependence of the resonances lineshape. The conductance behavior at large source-drain bias is suggestive of the charge density wave conduction expected for a chain of quantum dots.Comment: version 2: new figure 4, refined discussio

    Towards single-electron metrology

    Full text link
    We review the status of the understanding of single-electron transport (SET) devices with respect to their applicability in metrology. Their envisioned role as the basis of a high-precision electrical standard is outlined and is discussed in the context of other standards. The operation principles of single electron transistors, turnstiles and pumps are explained and the fundamental limits of these devices are discussed in detail. We describe the various physical mechanisms that influence the device uncertainty and review the analytical and numerical methods needed to calculate the intrinsic uncertainty and to optimise the fabrication and operation parameters. Recent experimental results are evaluated and compared with theoretical predictions. Although there are discrepancies between theory and experiments, the intrinsic uncertainty is already small enough to start preparing for the first SET-based metrological applications.Comment: 39 pages, 14 figures. Review paper to be published in International Journal of Modern Physics

    Formation of human capital as a key factor in ensuring the national security of agriculture in the digital economy

    Get PDF
    Over the past few years in many literary sources and the media an issue of the digital economy is rapidly gaining popularity due to the qualitative technological changes in society. In current circumstances the qualitative component of labor resources called “human capital” is a priority value. The authors have identified the main realities of the development of agribusiness, studied the main directions of information support on the example of the agricultural sector of the economy and identified the root causes of the slowdown in the innovation development of agriculture in Russia, the features of using information technologies in agribusiness have been considered in detail.peer-reviewe

    Giant fluctuations of superconducting order parameter in Ferromagnet/superconductor single electron transistors

    Full text link
    Spin dependent transport in a ferromagnet/superconductor/ferromagnet single electron transistor is studied theoretically with spin accumulation, spin relaxation, gap suppression, and charging effects taken into account. A strong dependence of the gap on the magnetic state of the outer electrodes is found, which gives rise to a negative magneto-resistance of up to 100 %. We predict that fluctuations of the spin accumulation due to tunneling of quasi-particles can play such an important role as to cause the island to fluctuate between the superconductin

    A Numerical Study of Coulomb Interaction Effects on 2D Hopping Transport

    Full text link
    We have extended our supercomputer-enabled Monte Carlo simulations of hopping transport in completely disordered 2D conductors to the case of substantial electron-electron Coulomb interaction. Such interaction may not only suppress the average value of hopping current, but also affect its fluctuations rather substantially. In particular, the spectral density SI(f)S_I (f) of current fluctuations exhibits, at sufficiently low frequencies, a 1/f1/f-like increase which approximately follows the Hooge scaling, even at vanishing temperature. At higher ff, there is a crossover to a broad range of frequencies in which SI(f)S_I (f) is nearly constant, hence allowing characterization of the current noise by the effective Fano factor F\equiv S_I(f)/2e \left. For sufficiently large conductor samples and low temperatures, the Fano factor is suppressed below the Schottky value (F=1), scaling with the length LL of the conductor as F=(Lc/L)αF = (L_c / L)^{\alpha}. The exponent α\alpha is significantly affected by the Coulomb interaction effects, changing from α=0.76±0.08\alpha = 0.76 \pm 0.08 when such effects are negligible to virtually unity when they are substantial. The scaling parameter LcL_c, interpreted as the average percolation cluster length along the electric field direction, scales as LcE(0.98±0.08)L_c \propto E^{-(0.98 \pm 0.08)} when Coulomb interaction effects are negligible and LcE(1.26±0.15)L_c \propto E^{-(1.26 \pm 0.15)} when such effects are substantial, in good agreement with estimates based on the theory of directed percolation.Comment: 19 pages, 7 figures. Fixed minor typos and updated reference

    A Numerical Study of Transport and Shot Noise at 2D Hopping

    Full text link
    We have used modern supercomputer facilities to carry out extensive Monte Carlo simulations of 2D hopping (at negligible Coulomb interaction) in conductors with the completely random distribution of localized sites in both space and energy, within a broad range of the applied electric field EE and temperature TT, both within and beyond the variable-range hopping region. The calculated properties include not only dc current and statistics of localized site occupation and hop lengths, but also the current fluctuation spectrum. Within the calculation accuracy, the model does not exhibit 1/f1/f noise, so that the low-frequency noise at low temperatures may be characterized by the Fano factor FF. For sufficiently large samples, FF scales with conductor length LL as (Lc/L)α(L_c/L)^{\alpha}, where α=0.76±0.08<1\alpha=0.76\pm 0.08 < 1, and parameter LcL_c is interpreted as the average percolation cluster length. At relatively low EE, the electric field dependence of parameter LcL_c is compatible with the law LcE0.911L_c\propto E^{-0.911} which follows from directed percolation theory arguments.Comment: 17 pages, 8 figures; Fixed minor typos and updated reference
    corecore