616 research outputs found
Non-Kondo mechanism for resistivity minimum in spin ice conduction systems
We present a mechanism of resistivity minimum in conduction electron systems
coupled with localized moments, which is distinguished from the Kondo effect.
Instead of the spin-flip process in the Kondo effect, electrons are elastically
scattered by local spin correlations which evolve in a particular way under
geometrical frustration as decreasing temperature. This is demonstrated by the
cellular dynamical mean-field theory for a spin-ice type Kondo lattice model on
a pyrochlore lattice. Peculiar temperature dependences of the resistivity,
specific heat, and magnetic susceptibility in the non-Kondo mechanism are
compared with the experimental data in metallic Ir pyrochlore oxides.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
Effects of Fermi surface and superconducting gap structure in the field-rotational experiments: A possible explanation of the cusp-like singularity in YNiBC
We have studied the field-orientational dependence of zero-energy density of
states (FODOS) for a series of systems with different Fermi surface and
superconducting gap structures. Instead of phenomenological Doppler-shift
method, we use an approximate analytical solution of Eilenberger equation
together with self-consistent determination of order parameter and a
variational treatment of vortex lattice. First, we compare zero-energy density
of states (ZEDOS) when a magnetic field is applied in the nodal direction
() and in the antinodal direction (), by taking
account of the field-angle dependence of order parameter. As a result, we found
that there exists a crossover magnetic field so that for for , consistent with our previous analyses. Next, we showed that and the
shape of FODOS are determined by contribution from the small part of Fermi
surface where Fermi velocity is parallel to field-rotational plane. In
particular, we found that is lowered and FODOS has broader minima, when a
superconducting gap has point nodes, in contrast to the result of the
Doppler-shift method. We also studied the effects of in-plane anisotropy of
Fermi surface. We found that in-plane anisotropy of quasi-two dimensional Fermi
surface sometimes becomes larger than the effects of Doppler-shift and can
destroy the Doppler-shift predominant region. In particular, this tendency is
strong in a multi-band system where superconducting coherence lengths are
isotropic. Finally, we addressed the problem of cusp-like singularity in
YNiBC and present a possible explanation of this phenomenon.Comment: 13pages, 23figure
Number of Circulating CD14-Positive Cells and the Serum Levels of TNF-α Are Raised in Acute Charcot Foot
International audienc
Simultaneous Optical Model Analyses of Elastic Scattering, Breakup, and Fusion Cross Section Data for the He + Bi System at Near-Coulomb-Barrier Energies
Based on an approach recently proposed by us, simultaneous
-analyses are performed for elastic scattering, direct reaction (DR)
and fusion cross sections data for the He+Bi system at
near-Coulomb-barrier energies to determine the parameters of the polarization
potential consisting of DR and fusion parts. We show that the data are well
reproduced by the resultant potential, which also satisfies the proper
dispersion relation. A discussion is given of the nature of the threshold
anomaly seen in the potential
Smoking influences the yield of dendritic cells for cancer immunotherapy
Background: Dendritic cell (DC)-based vaccination is considered to be a potentially effective therapeutic strategy against advanced cancer. The aim of this study was to address the smoking history that might affect the preparation of DC vaccines in validated instructional manufacture. Materials and Methods: Data on mature DCs generated from 102 sessions of leukapheresis performed on 92 patients with advanced cancer or sarcoma were retrospectively evaluated and compared in relation to the data between their smoking history and the generation of DCs from these patients. 61 patients with adenocarcinoma, including 7 with lung, 10 with breast, 8 with stomach, 12 with colorectal, and 23 with pancreatic adenocarcinoma were enrolled. Results: The average yield of autologous DCs (15.5 ± 8.3x107) was thought to be dependent on the number of monocytes (124.2 ± 74.1x107) collected by leukapheresis. The average ratio of DCs/apheresed monocytes (DC/aM ratio) was lower in the smoker group (11.1 ± 7.2%) than that in the non-smoker group (17.2 ± 9.3%, p=0.001). The number of DCs and the DC/aM ratio were lower in the patients with gastric and pancreatic cancer than in those with adenocarcinoma of other sites. Conclusions: As cancer therapy moves forward into the field of personaArticlePharmaceutical Regulatory Affairs. 4(1):133 (2015)journal articl
Optical conductivity of rattling phonons in type-I clathrate BaGaGe
A series of infrared-active optical phonons have been detected in type-I
clathrate BaGaGe by terahertz time-domain spectroscopy. The
conductivity spectra with the lowest-lying peaks at 1.15 and 1.80 THz are
identified with so-called rattling phonons, i.e., optical modes of the guest
ion Ba with symmetry in the oversized tetrakaidecahedral
cage. The temperature dependence of the spectra from these modes are totally
consistent with calculations based on a one-dimensional anharmonic potential
model that, with decreasing temperature, the shape becomes asymmetrically sharp
associated with a softening for the weight to shift to lower frequency. These
temperature dependences are determined, without any interaction effects, by the
Bose-factor for optical excitations of anharmonic phonons with the nonequally
spaced energy levels.Comment: 4 pages, 4 figure
Slow Relaxation of Spin Structure in Exotic Ferromagnetic Phase of Ising-like Heisenberg Kagome Antiferromagnets
In the corner-sharing lattice, magnetic frustration causes macroscopic
degeneracy in the ground state, which prevents systems from ordering. However,
if the ensemble of the degenerate configuration has some global structure, the
system can have a symmetry breaking phenomenon and thus posses a finite
temperature phase transition. As a typical example of such cases, the magnetic
phase transition of the Ising-like Heisenberg antiferromagnetic model on the
kagome lattice has been studied. There, a phase transition of the
two-dimensional ferromagnetic Ising universality class occurs accompanying with
the uniform spontaneous magnetization. Because of the macroscopic degeneracy in
the ordered phase, the system is found to show an entropy-driven ordering
process, which is quantitatively characterized by the number of ``weathervane
loop''. We investigate this novel type of slow relaxation in regularly
frustrated system.Comment: 4 pages, 6 figure
- …