1,604 research outputs found

    Noncommutative Switching of Double Spiropyrans

    Get PDF
    The spiropyran family of photochromes are key components in molecular-based responsive materials and devices, e.g., as multiphotochromes, covalently coupled dyads, triads, etc. This attention is in no small part due to the change in properties that accompany the switch between spiropyran and merocyanine forms. Although the spiropyran is a single structural isomer, the merocyanine form represents a family of isomers (TTT, TTC, CCT, etc.) and protonation states. Combining two spiropyrans into one compound increases the number of possible structures dramatically and the interaction between the units determines, which are impeded due to intramolecular quenching of excited states. Here, we show that the coupling of two spiropyran photochromes through their phenol units yields favorable interactions (crosstalk) between the components that provides access to species inaccessible with the component monospiropyran alone. Specifically, the ring opening of one spiropyran unit, which is thermally stable at-30 °C, prevents ring opening of the second spiropyran unit. Furthermore, whereas protonated E-and Z-monomerocyanines were previously shown to undergo thermal-and photo-equilibration, the corresponding protonated E-and Z-bimerocyanines are thermally stable and show one-way photoisomerization from the Z,Z-to an emissive E,E-bimerocyanine form. Subsequent deprotonation at room temperature resets the system to the bispiro ring-closed form, but deprotonation at-30 °C yields the otherwise inaccessible bimerocyanine form. This form is photochemically inert but undergoes a two-step thermal relaxation via the merocyanine-spiropyran form, showing that the connection at the phenol units provides sufficient intramolecular interaction to fine-tune the complex isomerization pathways of spiropyrans and demonstrating noncommutability in photo-and pH-regulated multistep isomerization pathways

    Orbital Optimized Density Functional Theory for Electronic Excited States

    Full text link
    Density functional theory (DFT) based modeling of electronic excited states is of importance for investigation of the photophysical/photochemical properties and spectroscopic characterization of large systems. The widely used linear response time-dependent DFT (TDDFT) approach is however not effective at modeling many types of excited states, including (but not limited to) charge-transfer states, doubly excited states and core-level excitations. In this perspective, we discuss state-specific orbital optimized (OO) DFT approaches as an alterative to TDDFT for electronic excited states. We motivate the use of OO-DFT methods and discuss reasons behind their relatively restricted historical usage (vs TDDFT). We subsequently highlight modern developments that address these factors and allow efficient and reliable OO-DFT computations. Several successful applications of OO-DFT for challenging electronic excitations are also presented, indicating their practical efficacy. OO-DFT approaches are thus increasingly becoming a useful route for computing excited states of large chemical systems. We conclude by discussing the limitations and challenges still facing OO-DFT methods, as well as some potential avenues for addressing them

    Polymer Bound Photobase Generators And Photoacid Generators For Pitch Division Lithography

    Get PDF
    The semiconductor industry is pursuing several process options that provide pathways to printing images smaller than the theoretical resolution limit of 193 nm projection scanners. These processes include double patterning, side wall deposition and pitch division. Pitch doubling lithography (PDL), the achievement of pitch division by addition of a photobase generator (PBG) to typical 193 nm resist formulations was recently presented. 1 Controlling the net acid concentration as a function of dose by incorporating both a photoacid generator (PAG) and a PBG in the resist formulation imparts a resist dissolution rate response modulation at twice the frequency of the aerial image. Simulation and patterning of 45 nm half pitch L/S patterns produced using a 90 nm half pitch mask were reported. 2 Pitch division was achieved, but the line edge roughness of the resulting images did not meet the current standard. To reduce line edge roughness, polymer bound PBGs and polymer bound PAGs were investigated in the PDL resist formulations. The synthesis, purification, analysis, and functional performance of various polymers containing PBG or PAG monomers are described herein. Both polymer bound PBG with monomeric PAG and polymer bound PAG with monomeric PBG showed a PDL response. The performance of the polymer bound formulations is compared to the same formulations with small molecule analogs of PAG and PBG.Chemical Engineerin

    Infrared spectroscopy of small-molecule endofullerenes

    Full text link
    Hydrogen is one of the few molecules which has been incarcerated in the molecular cage of C60_{60} and forms endohedral supramolecular complex H2_2@C60_{60}. In this confinement hydrogen acquires new properties. Its translational motion becomes quantized and is correlated with its rotations. We applied infrared spectroscopy to study the dynamics of hydrogen isotopologs H2_2, D2_2 and HD incarcerated in C60_{60}. The translational and rotational modes appear as side bands to the hydrogen vibrational mode in the mid infrared part of the absorption spectrum. Because of the large mass difference of hydrogen and C60_{60} and the high symmetry of C60_{60} the problem is identical to a problem of a vibrating rotor moving in a three-dimensional spherical potential. The translational motion within the C60_{60} cavity breaks the inversion symmetry and induces optical activity of H2_2. We derive potential, rotational, vibrational and dipole moment parameters from the analysis of the infrared absorption spectra. Our results were used to derive the parameters of a pairwise additive five-dimensional potential energy surface for H2_2@C60_{60}. The same parameters were used to predict H2_2 energies inside C70_{70}[Xu et al., J. Chem. Phys., {\bf 130}, 224306 (2009)]. We compare the predicted energies and the low temperature infrared absorption spectra of H2_2@C70_{70}.Comment: Updated author lis

    Photobase Generator Enabled Pitch Division: A Progress Report

    Get PDF
    Pitch division lithography (PDL) with a photobase generator (PBG) allows printing of grating images with twice the pitch of a mask. The proof-of-concept has been published in the previous paper[1, 2] and demonstrated by others[1]. Forty five nm half-pitch (HP) patterns were produced using a 90nm HP mask, but the image had line edge roughness (LER) that does not meet requirements. Efforts have been made to understand and improve the LER in this process. Challenges were summarized toward low LER and good performing pitch division. Simulations and analysis showed the necessity for an optical image that is uniform in the z direction in order for pitch division to be successful. Two-stage PBGs were designed for enhancement of resist chemical contrast. New pitch division resists with polymer-bound PAGs and PBGs, and various PBGs were tested. This paper focuses on analysis of the LER problems and efforts to improve patterning performance in pitch division lithography.Chemical Engineerin

    Red Phosphorescence from Benzo[2,1,3]thiadiazoles at Room Temperature

    Get PDF
    We describe the red phosphorescence exhibited by a class of structurally simple benzo[2,1,3]thiadiazoles at room temperature. The photophysical properties of these molecules in deoxygenated cyclohexane, including their absorption spectra, steady-state photoluminescence and excitation spectra, and phosphorescence lifetimes, are presented. Time-dependent density functional theory calculations were carried out to better understand the electronic excited states of these benzo[2,1,3]thiadiazoles and why they are capable of phosphorescence.National Science Foundation (U.S.) (1122374)United States. Dept. of Energy. Office of Basic Energy Sciences (DE-FG02-07ER46474
    corecore