142 research outputs found

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    APCcdh1 Mediates Degradation of the Oncogenic Rho-GEF Ect2 after Mitosis

    Get PDF
    Background: Besides regulation of actin cytoskeleton-dependent functions, Rho GTPase pathways are essential to cell cycle progression and cell division. Rho, Rac and Cdc42 regulate G1 to S phase progression and are involved in cytokinesis. RhoA GDP/GTP cycling is required for normal cytokinesis and recent reports have shown that the exchange factor Ect2 and the GTPase activating protein MgcRacGAP regulate RhoA activity during mitosis. We previously showed that the transcription factors E2F1 and CUX1 regulate expression of MgcRacGAP and Ect2 as cells enter S-phase. Methodology/Principal Findings: We now report that Ect2 is subject to proteasomal degradation after mitosis, following ubiquitination by the APC/C complex and its co-activator Cdh1. A proper nuclear localization of Ect2 is necessary for its degradation. APC-Cdh1 assembles K11-linked poly-ubiquitin chains on Ect2, depending upon a stretch of,25 amino acid residues that contain a bi-partite NLS, a conventional D-box and two TEK-like boxes. Site-directed mutagenesis of target sequences generated stabilized Ect2 proteins. Furthermore, such degradation-resistant mutants of Ect2 were found to activate RhoA and subsequent signalling pathways and are able to transform NIH3T3 cells. Conclusions/Significance: Our results identify Ect2 as a bona fide cell cycle-regulated protein and suggest that its ubiquitination-dependent degradation may play an important role in RhoA regulation at the time of mitosis. Our findings raise the possibility that the overexpression of Ect2 that has been reported in some human tumors might result not only from deregulated transcription, but also from impaired degradation

    Src tyrosine kinase augments taxotere-induced apoptosis through enhanced expression and phosphorylation of Bcl-2

    Get PDF
    Activation of Src, which has an intrinsic protein tyrosine kinase activity, has been demonstrated in many human tumours, such as colorectal and breast cancers, and is closely associated with the pathogenesis and metastatic potential of these cancers. In this study, we have examined the effect of activated Src on the sensitivity to taxotere, an anticancer drug targeting microtubules, using v-src-transfected HAG-1 human gall bladder epithelial cells. As compared with parental HAG-1 cell line, v-src-transfected HAG/src3-1 cells became 5.9 and 7.0-fold sensitive to taxotere for 2 and 24-h exposure, respectively. By contrast, HAG-1 cells transfected with activated Ras, which acts downstream of Src, acquired approximately 2.5∼4.8-fold taxotere resistance. The taxotere sensitivity in HAG/src3-1 cells was reversed, if not completely, by herbimycin A, a specific inhibitor of Src family protein tyrosine kinase, indicating that Src protein tyrosine kinase augments sensitivity to taxotere. Treatment of HAG/src3-1 cells with taxotere resulted in phosphorylation of Bcl-2 and subsequent induction of apoptotic cell death, whereas neither Bcl-2 phosphorylation nor apoptosis occurred in parental or c-H-ras-transfected HAG-1 cells. Interestingly, the Bcl-2 protein is overexpressed in v-src-transfected cell line, compared to those in parental or Ras-transfected cell line. Treatment of HAG/src3-1 cells with herbimycin A significantly reduced the expression and phosphorylation of Bcl-2, and abrogated taxotere-induced apoptosis, suggesting a potential role for Src protein tyrosine kinase in the taxotere-induced apoptotic events. H-7, a protein kinase C inhibitor and wortmannin, a phosphatidylinositol-3 kinase (PI-3 kinase) inhibitor, neither altered taxotere sensitivity nor inhibited taxotere-induced apoptosis in these cells. These data indicate that the ability of activated Src to increase taxotere sensitivity would be mediated by apoptotic events occurring through Src to downstream signal transduction pathways toward Bcl-2 phosphorylation, but not by activated Ras, PI-3 kinase or protein kinase C

    Correlation between p38 mitogen-activated protein kinase and human telomerase reverse transcriptase in sarcomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the major components of telomerase is the human telomerase reverse transcriptase (hTERT) as the catalytic protein. hTERT mRNA expression are reported to be associated with prognosis and tumor progression in several sarcomas. However, there is no clear understanding of the mechanisms of hTERT in human sarcomas. Recent studies have suggested that signals transmitted through p38 mitogen-activated protein kinase (MAPK) can increase or decrease hTERT transcription in human cells. The purpose of this study was to analyse the correlation between p38 MAPK and hTERT in sarcoma samples.</p> <p>Methods</p> <p>We investigated 36 soft tissue malignant fibrous histiocytomas (MFH), 24 liposarcomas (LS) and 9 bone MFH samples for hTERT and p38 MAPK expression. Quantitative detection of hTERT and p38 MAPK was performed by RT-PCR.</p> <p>Results</p> <p>There was a significant positive correlation between the values of hTERT and p38 MAPK in all samples (r = 0.445, p = 0.0001), soft tissue MFH (r = 0.352, p = 0.0352), LS (r = 0.704, p = 0.0001) and bone MFH samples (r = 0.802, p = 0.0093). Patients who had a higher than average expression of p38 MAPK had a significantly worse prognosis than other patients (p = 0.0036).</p> <p>Conclusions</p> <p>p38 MAPK may play a role in up-regulation of hTERT, and therefore, p38 MAPK may be a useful marker in the assessment of hTERT and patients' prognosis in sarcomas.</p

    Comparative Genomic Analysis of Clinical Strains of Campylobacter jejuni from South Africa

    Get PDF
    BACKGROUND: Campylobacter jejuni is a common cause of acute gastroenteritis and is also associated with the post-infectious neuropathies, Guillain-Barré and Miller Fisher syndromes. In the Cape Town area of South Africa, C. jejuni strains with Penner heat-stable (HS) serotype HS:41 have been observed to be overrepresented among cases of Guillain-Barré syndrome. The present study examined the genetic content of a collection of 32 South African C. jejuni strains with different serotypes, including 13 HS:41 strains, that were recovered from patients with enteritis, Guillain-Barré or Miller Fisher syndromes. The sequence-based typing methods, multilocus sequence typing and DNA microarrays, were employed to potentially identify distinguishing features within the genomes of these C. jejuni strains with various disease outcomes. METHODOLOGY/PRINCIPAL FINDINGS: Comparative genomic analyses demonstrated that the HS:41 South African strains were clearly distinct from the other South African strains. Further DNA microarray analysis demonstrated that the HS:41 strains from South African patients with the Guillain-Barré syndrome or enteritis were highly similar in gene content. Interestingly, the South African HS:41 strains were distinct in gene content when compared to HS:41 strains from other geographical locations due to the presence of genomic islands, referred to as Campylobacter jejuni integrated elements (CJIEs). Only the integrated element CJIE1, a Campylobacter Mu-like prophage, was present in the South African HS:41 strains whereas this element was absent in two closely-related HS:41 strains from Mexico. A more distantly-related HS:41 strain from Canada possessed both integrated elements CJIE1 and CJIE2. CONCLUSION/SIGNIFICANCE: These findings demonstrate that CJIEs may contribute to the differentiation of closely-related C. jejuni strains. In addition, the presence of bacteriophage-related genes in CJIE1 may contribute to the genomic diversity of C. jejuni strains. This comparative genomic analysis of C. jejuni provides fundamental information that potentially could lead to improved methods for analyzing the epidemiology of disease outbreaks

    Mantle Pb paradoxes : the sulfide solution

    Get PDF
    Author Posting. © Springer, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 152 (2006): 295-308, doi:10.1007/s00410-006-0108-1.There is growing evidence that the budget of Pb in mantle peridotites is largely contained in sulfide, and that Pb partitions strongly into sulfide relative to silicate melt. In addition, there is evidence to suggest that diffusion rates of Pb in sulfide (solid or melt) are very fast. Given the possibility that sulfide melt ‘wets’ sub-solidus mantle silicates, and has very low viscosity, the implications for Pb behavior during mantle melting are profound. There is only sparse experimental data relating to Pb partitioning between sulfide and silicate, and no data on Pb diffusion rates in sulfides. A full understanding of Pb behavior in sulfide may hold the key to several long-standing and important Pb paradoxes and enigmas. The classical Pb isotope paradox arises from the fact that all known mantle reservoirs lie to the right of the Geochron, with no consensus as to the identity of the “balancing” reservoir. We propose that long-term segregation of sulfide (containing Pb) to the core may resolve this paradox. Another Pb paradox arises from the fact that the Ce/Pb ratio of both OIB and MORB is greater than bulk earth, and constant at a value of 25. The constancy of this “canonical ratio” implies similar partition coefficients for Ce and Pb during magmatic processes (Hofmann et al. 1986), whereas most experimental studies show that Pb is more incompatible in silicates than Ce. Retention of Pb in residual mantle sulfide during melting has the potential to bring the bulk partitioning of Ce into equality with Pb if the sulfide melt/silicate melt partition coefficient for Pb has a value of ~ 14. Modeling shows that the Ce/Pb (or Nd/Pb) of such melts will still accurately reflect that of the source, thus enforcing the paradox that OIB and MORB mantles have markedly higher Ce/Pb (and Nd/Pb) than the bulk silicate earth. This implies large deficiencies of Pb in the mantle sources for these basalts. Sulfide may play other important roles during magmagenesis: 1). advective/diffusive sulfide networks may form potent metasomatic agents (in both introducing and obliterating Pb isotopic heterogeneities in the mantle); 2). silicate melt networks may easily exchange Pb with ambient mantle sulfides (by diffusion or assimilation), thus ‘sampling’ Pb in isotopically heterogeneous mantle domains differently from the silicate-controlled isotope tracer systems (Sr, Nd, Hf), with an apparent ‘de-coupling’ of these systems.Our intemperance should not be blamed on the support we gratefully acknowledge from NSF: EAR- 0125917 to SRH and OCE-0118198 to GAG
    corecore